Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
PV self-consumption prediction methods using supervised machine learning
KTH.
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Tillämpad termodynamik och kylteknik.ORCID-id: 0000-0002-2603-7595
Rekke forfattare: 22022 (engelsk)Inngår i: 2022 BuildSim Nordic, BSN 2022, EDP Sciences , 2022, artikkel-id 02003Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The increased prevalence of photovoltaic (PV) self-consumption policies across Europe and the world place an increased importance on accurate predictions for life-cycle costing during the planning phase. This study presents several machine learning and regression models for predicting self-consumption, trained on a variety of datasets from Sweden. The results show that advanced ML models have an improved performance over simpler regressions, where the highest performing model, Random Forest, has a mean average error of 1.5 percentage points and an R2 of 0.977. Training models using widely available typical meteorological year (TMY) climate data is also shown to introduce small, acceptable errors when tested against spatially and temporally matched climate and load data. The ability to train the ML models with TMY climate data makes their adoption easier and builds on previous work by demonstrating the robustness of the methodology as a self-consumption prediction tool. The low error and high R2 are a notable improvement over previous estimation models and the minimal input data requirements make them easy to adopt and apply in a wide array of applications.

sted, utgiver, år, opplag, sider
EDP Sciences , 2022. artikkel-id 02003
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-333443DOI: 10.1051/e3sconf/202236202003Scopus ID: 2-s2.0-85146889141OAI: oai:DiVA.org:kth-333443DiVA, id: diva2:1785271
Konferanse
2022 BuildSim Nordic, BSN 2022, Copenhagen, Denmark, Aug 22 2022 - Aug 23 2022
Merknad

QC 20230802

Tilgjengelig fra: 2023-08-02 Laget: 2023-08-02 Sist oppdatert: 2023-08-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Tóth, MartosSommerfeldt, Nelson

Søk i DiVA

Av forfatter/redaktør
Tóth, MartosSommerfeldt, Nelson
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 41 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf