Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving Cloud Storage Network Bandwidth Utilization of Scientific Applications
University of Edinburgh, United Kingdom.
RIKEN Center for Computational Science Japan.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Programvaruteknik och datorsystem, SCS.ORCID-id: 0000-0001-5452-6794
KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Parallelldatorcentrum, PDC.ORCID-id: 0000-0002-5020-1631
Vise andre og tillknytning
2023 (engelsk)Inngår i: Proceedings of the 7th Asia-Pacific Workshop on Networking, APNET 2023, Association for Computing Machinery (ACM) , 2023, s. 172-173Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Cloud providers began to provide managed services to attract scientific applications, which have been traditionally executed on supercomputers. One example is AWS FSx for Lustre, a fully managed parallel file system (PFS) released in 2018. However, due to the nature of scientific applications, the frontend storage network bandwidth is left completely idle for the majority of its lifetime. Furthermore, the pricing model does not match the scalability requirement. We propose iFast, a novel host-side caching mechanism for scientific applications that improves storage bandwidth utilization and end-to-end application performance: by overlapping compute and data writeback through inexpensive local storage. iFast supports the Massage Passing Interface (MPI) library that is widely used by scientific applications and is implemented as a preloaded library. It requires no change to applications, the MPI library, or support from cloud operators. We demonstrate how iFast can accelerate the end-to-end time of a representative scientific application Neko, by 13-40%.

sted, utgiver, år, opplag, sider
Association for Computing Machinery (ACM) , 2023. s. 172-173
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-338993DOI: 10.1145/3600061.3603122ISI: 001147804500029Scopus ID: 2-s2.0-85173833099OAI: oai:DiVA.org:kth-338993DiVA, id: diva2:1808729
Konferanse
7th Asia-Pacific Workshop on Networking, APNET 2023, Jun 29 - Jun 30 2023, Hong Kong, China,
Merknad

Part of ISBN 9798400707827

QC 20231101

Tilgjengelig fra: 2023-11-01 Laget: 2023-11-01 Sist oppdatert: 2024-02-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Podobas, ArturJansson, NiclasMarkidis, Stefano

Søk i DiVA

Av forfatter/redaktør
Podobas, ArturJansson, NiclasMarkidis, Stefano
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 43 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf