Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Harmonic retrieval using weighted lifted-structure low-rank matrix completion
Electrical Engineering Department, Sharif University of Technology, Iran; Department of Electronic Systems, Aalborg university, Denmark.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Nätverk och systemteknik. Electrical Engineering Department, Sharif University of Technology, Iran.ORCID-id: 0000-0003-4519-9204
Electrical and Computer Engineering Department, National Yang-Ming Chao-Tung University (NYCU), Taiwan.
Electrical Engineering Department, Sharif University of Technology, Iran.
Vise andre og tillknytning
2024 (engelsk)Inngår i: Signal Processing, ISSN 0165-1684, E-ISSN 1872-7557, Vol. 216, artikkel-id 109253Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper, we investigate the problem of recovering the frequency components of a mixture of K complex sinusoids from a random subset of N equally-spaced time-domain samples. Because of the random subset, the samples are effectively non-uniform. Besides, the frequency values of each of the K complex sinusoids are assumed to vary continuously within a given range. For this problem, we propose a two-step strategy: (i) we first lift the incomplete set of uniform samples (unavailable samples are treated as missing data) into a structured matrix with missing entries, which is potentially low-rank; then (ii) we complete the matrix using a weighted nuclear minimization problem. We call the method a weighted lifted-structured (WLi) low-rank matrix recovery. Our approach can be applied to a range of matrix structures such as Hankel and double-Hankel, among others, and provides improvement over the unweighted existing schemes such as EMaC and DEMaC. We provide theoretical guarantees for the proposed method, as well as numerical simulations in both noiseless and noisy settings. Both the theoretical and the numerical results confirm the superiority of the proposed approach.

sted, utgiver, år, opplag, sider
Elsevier BV , 2024. Vol. 216, artikkel-id 109253
Emneord [en]
Hankel structure, Lifting operator, Low-rank matrix completion
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-339042DOI: 10.1016/j.sigpro.2023.109253Scopus ID: 2-s2.0-85174693122OAI: oai:DiVA.org:kth-339042DiVA, id: diva2:1815292
Merknad

QC 20231128

Tilgjengelig fra: 2023-11-28 Laget: 2023-11-28 Sist oppdatert: 2023-11-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Razavikia, Saeed

Søk i DiVA

Av forfatter/redaktør
Razavikia, Saeed
Av organisasjonen
I samme tidsskrift
Signal Processing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 62 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf