Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Register Caching for Energy Efficient GPGPU Tensor Core Computing
KTH, Skolan för elektroteknik och datavetenskap (EECS).
2023 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgaveAlternativ tittel
Registrera cachelagring för energieffektiv GPGPU Tensor Core Computing (svensk)
Abstract [en]

The General-Purpose GPU (GPGPU) has emerged as the predominant computing device for extensive parallel workloads in the fields of Artificial Intelligence (AI) and Scientific Computing, primarily owing to its adoption of the Single Instruction Multiple Thread architecture, which not only provides a wealth of thread context but also effectively hide the latencies exposed in the single threads executions. As computational demands have evolved, modern GPGPUs have incorporated specialized matrix engines, e.g., NVIDIA’s Tensor Core (TC), in order to deliver substantially higher throughput for dense matrix computations compared with traditional scalar or vector architectures. Beyond mere throughput, energy efficiency is a pivotal concern in GPGPU computing. The register file is the largest memory structure on the GPGPU die and typically accounts for over 20% of the dynamic power consumption. To enhance energy efficiency, GPGPUs incorporate a technique named register caching borrowed from the realm of CPUs. Register caching captures temporal locality among register operands to reduce energy consumption within a 2- level register file structure. The presence of TC raises new challenges for Register Cache (RC) design, as each matrix instruction applies intensive operand delivering traffic on the register file banks. In this study, we delve into the RC design trade-offs in GPGPUs. We undertake a comprehensive exploration of the design space, encompassing a range of workloads. Our experiments not only reveal the basic design considerations of RC but also clarify that conventional caching strategies underperform, particularly when dealing with TC computations, primarily due to poor temporal locality and the substantial register operand traffic involved. Based on these findings, we propose an enhanced caching strategy featuring a look-ahead allocation policy to minimize unnecessary cache allocations for the destination register operands. Furthermore, to leverage the energy efficiency of Tensor Core computing, we highlight an alternative instruction scheduling framework for Tensor Core instructions that collaborates with a specialized caching policy, resulting in a remarkable reduction of up to 50% in dynamic energy consumption within the register file during Tensor Core GEMM computations.

Abstract [sv]

Den allmänna ändamålsgrafikprocessorn (GPGPU) har framträtt som den dominerande beräkningsenheten för omfattande parallella arbetsbelastningar inom områdena för artificiell intelligens (AI) och vetenskaplig beräkning, huvudsakligen tack vare dess antagande av arkitekturen för enkel instruktion, flera trådar (Single Instruction Multiple Thread), vilket inte bara ger en mängd trådcontext utan också effektivt döljer de latenser som exponeras vid enskilda trådars utförande. När beräkningskraven har utvecklats har moderna GPGPU:er inkorporerat specialiserade matrismotorer, t.ex., NVIDIAs Tensor Core (TC), för att leverera avsevärt högre genomströmning för täta matrisberäkningar jämfört med traditionella skalär- eller vektorarkitekturer. Bortom endast genomströmning är energieffektivitet en central oro inom GPGPUberäkning. Registerfilen är den största minnesstrukturen på GPGPU-dien och svarar vanligtvis för över 20% av den dynamiska effektförbrukningen För att förbättra energieffektiviteten inkorporerar GPGPU:er en teknik vid namn registercachning, lånad från CPU-världen. Registercachning fångar temporal lokalitet bland registeroperanderna för att minska energiförbrukningen inom en 2-nivåers registerfilstruktur. Närvaron av TC innebär nya utmaningar för Register Cache (RC)-design, eftersom varje matrisinstruktion genererar intensiv operandleverans på registerfilbankarna. I denna studie fördjupar vi oss i RC-designavvägandena i GPGPU:er. Vi genomför en omfattande utforskning av designutrymmet, som omfattar olika arbetsbelastningar. Våra experiment avslöjar inte bara de grundläggande designövervägandena för RC utan klargör också att konventionella cachestrategier underpresterar, särskilt vid hantering av TC-beräkningar, främst på grund av dålig temporal lokalitet och den betydande trafiken med registeroperand. Baserat på dessa resultat föreslår vi en förbättrad cachestrategi med en look-ahead-alloceringspolicy för att minimera onödiga cacheallokeringar för destinationens registeroperand. Dessutom, för att dra nytta av energieffektiviteten hos Tensor Core-beräkning, belyser vi en alternativ instruktionsplaneringsram för Tensor Core-instruktioner som samarbetar med en specialiserad cachelayout, vilket resulterar i en anmärkningsvärd minskning av upp till 50% i dynamisk energiförbrukning inom registerfilen under Tensor Core GEMM-beräkningar.

sted, utgiver, år, opplag, sider
2023. , s. 69
Serie
TRITA-EECS-EX ; 2023:891
Emneord [en]
Computer Architecture, GPGPU, Tensor Core, GEMM, Energy Efficiency, Register File, Cache, Instruction Scheduling
Emneord [sv]
Datorarkitektur, GPGPU, Tensor Core, GEMM, energieffektivitet, registerfil, cache, instruktionsschemaläggning
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-343516OAI: oai:DiVA.org:kth-343516DiVA, id: diva2:1838155
Utdanningsprogram
Master of Science - Embedded Systems
Veileder
Examiner
Tilgjengelig fra: 2024-02-16 Laget: 2024-02-15 Sist oppdatert: 2024-02-16bibliografisk kontrollert

Open Access i DiVA

fulltext(6237 kB)733 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 6237 kBChecksum SHA-512
14dfae95cb80d0fd771e5f0c83372496acacba36be3bba197abfe4e213e481750b0c8488c9aa4f87a1c8f64670ed6b89df475e41762dd09f87b6ff447663e545
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 733 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 422 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf