Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Managing Climate Overshoot Risk with Reinforcement Learning: Carbon Dioxide Removal, Tipping Points and Risk-constrained RL
KTH, Skolan för elektroteknik och datavetenskap (EECS).
2024 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgaveAlternativ tittel
Hantering av risk vid överskjutning av klimatmål med förstärkande inlärning : Koldioxidinfångning, tröskelpunkter och riskbegränsad förstärkande inlärning (svensk)
Abstract [en]

In order to study how to reach different climate targets, scientists and policymakers rely on results from computer models known as Integrated Assessment Models (IAMs). These models are used to quantitatively study different ways of achieving warming targets such as the Paris goal of limiting warming to 1.5-2.0 °C, deriving climate mitigation pathways that are optimal in some sense. However, when applied to the Paris goal many IAMs derive pathways that overshoot the temperature target: global temperature temporarily exceeds the warming target for a period of time, before decreasing and stabilizing at the target. Although little is known with certainty about the impacts of overshooting, recent studies indicate that there may be major risks entailed. This thesis explores two different ways of including overshoot risk in a simple IAM by introducing stochastic elements to it. Then, algorithms from Reinforcement Learning (RL) are applied to the model in order to find pathways that take overshoot risk into consideration. In one experiment we apply standard risk-neutral RL to the DICE model extended with a probabilistic damage function and carbon dioxide removal technologies. In the other experiment, the model is further augmented with a probabilistic tipping element model. Using risk-constrained RL we then train an algorithm to optimally control this model, whilst controlling the conditional-value-at-risk of triggering tipping elements below a user-specified threshold. Although some instability and convergence issues are present during training, in both experiments the agents are able to achieve policies that outperform a simple baseline. Furthermore, the risk-constrained agent is also able to (approximately) control the tipping risk metric below a desired threshold in the second experiment. The final policies are analysed for domain insights, indicating that carbon removal via temporal carbon storage solutions could be a sizeable contributor to negative emissions on a time-horizon relevant for overshooting. In the end, recommended next steps for future work are discussed.

Abstract [sv]

För att studera hur globala klimatmål kan nås använder forskare och beslutsfattare resultat från integrerade bedömningsmodeller (IAM:er). Dessa modeller används för att kvantitativt förstå olika vägar till temperaturmål, så som Parisavtalets mål om att begränsa den globala uppvärmningen till 1.5-2.0 °C. Resultaten från dessa modeller är så kallade ”mitigation pathways” som är optimala utifrån något uppsatt kriterium. När sådana modellkörningar görs med Parismålet erhålls dock ofta optimala pathways som överskjuter temperaturmålet tillfälligt: den globala temperaturen överstiger målet i en period innan den sjunker och till slut stabiliseras vid det satta målet. Kunskapen om vilken påverkan en överskjutning har är idag begränsad, men flertalet nyligen gjorda studier indikerar att stora risker potentiellt kan medföras. I denna uppsats utforskas två olika sätt att inkludera överskjutningsrisk i en enkel IAM genom användandet av stokastiska element. Därefter används Förstärkande Inlärning på modellen för att erhålla modellösningar som tar hänsyn till överkjutningsrisk. I ett av experimenten utökas IAM:en med en stokastisk skadefunktion och tekniker för koldioxidinfångning varpå vanlig Förstärkande Inlärning appliceras. I det andra experimentet utökas modellen ytterligare med en stokastisk modell för tröskelpunkter. Med hjälp av risk-begränsad Förstärkande Inlärning tränas därefter en modell för att optimalt kontrollera denna IAM samtidigt som risken att utlösa tröskelpunkter kontrolleras till en nivå satt av användaren. Även om en viss grad av instabilitet och problem med konvergens observeras under inlärningsprocessen så lyckas agenterna i båda experimenten hitta beslutsregler som överträffar en enkel baslinje. Vidare lyckas beslutsregeln som erhålls i det andra experimentet, med den risk-begränsade inlärningen, approximativt kontrollera risken att utlösa tröskelpunkter till det specificerade värdet. Efter träning analyseras de bästa beslutsreglerna i syfte att finna domänmässiga insikter, varav en av dessa insikter är att temporära kollager kan ge betydande bidrag för koldioxidinfångning i en tidshorisont relevant vid överskjutning. Slutligen diskuteras möjliga nästa steg för framtida arbeten inom området.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology , 2024. , s. 115
Serie
TRITA-EECS-EX ; 2024:39
Emneord [en]
Reinforcement Learning, Risk-aware Reinforcement Learning, Optimal Control of Stochastic Climate-Economy System, IntegratedAssessment Model, DICE, Overshoot Risk, Carbon Dioxide Removal (CDR) Technologies, Tipping Points
Emneord [sv]
Förstärkande Inlärning, Riskmedveten Förstärkande Inlärning, Optimal Styrning av Klimat-Ekonomi System, IntegreradeBedömningsmodeller, DICE-modellen, Överskjutningsrisk, Koldioxidinfångning, Tröskelpunkter
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-345640OAI: oai:DiVA.org:kth-345640DiVA, id: diva2:1851716
Eksternt samarbeid
IVL Swedish Environmental Research Institute
Veileder
Examiner
Tilgjengelig fra: 2024-05-07 Laget: 2024-04-15 Sist oppdatert: 2024-05-07bibliografisk kontrollert

Open Access i DiVA

fulltext(5520 kB)331 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 5520 kBChecksum SHA-512
395a20bc1cd07820f5a038ab6b7a6210a10a4f8ad46d14c95eb865b39150119c6e781c76312dbf970a5a8efdec8b027f48f4efae8f37f56c6a4064d1d54cb0f2
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 331 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 363 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf