Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving landslide susceptibility mapping using integration of ResU-Net technique and optimized machine learning algorithms
Geoscience Data Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, Republic of Korea; Department of Geophysical Exploration, University of Science and Technology, Daejeon, Republic of Korea.
Division of Science Education, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea, Gangwon-do.
Department of Civil and Environmental Engineering and Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI, United States.
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik, Vatten- och miljöteknik. Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.ORCID-id: 0000-0002-7978-0040
Vise andre og tillknytning
2023 (engelsk)Inngår i: Remote Sensing of Soil and Land Surface Processes: Monitoring, Mapping, and Modeling, Elsevier BV , 2023, s. 419-438Kapittel i bok, del av antologi (Annet vitenskapelig)
Abstract [en]

Landslides are the most common natural disasters in mountainous areas that follow major seismic events, volcanic activity, melting snow, or prolonged and intense rainfalls and cause severe disruptions to ecosystems, economies, and societies worldwide. Therefore, minimizing their negative effects through landslide-susceptibility assessment is essential. In this study, the standard support vector regression (SVR) integrated with the gray wolf optimizer (GWO) and particle swarm optimization (PSO) algorithms were used to map landslide-prone areas. The landslide inventory map was automatically generated using a pixel-based technique based on residual U-Net algorithm from the Sentinel-2 data. In total, 4900 landslide samples were identified and divided randomly into two groups, creating training (70%) and testing (30%) datasets. In addition, nine factors that affect landslides were selected to construct a model using each algorithm. Finally, the performance of the models (SVR, SVR-GWO, and SVR-PSO) were validated and compared using the area under the receiver operating characteristic curve. The findings showed that the hybrid SVR-GWO model performed better than the standard model and is recommended for landslide susceptibility assessment due to its accuracy and efficiency.

sted, utgiver, år, opplag, sider
Elsevier BV , 2023. s. 419-438
Emneord [en]
Landslide, Pixel-based technique, Residual U-Net, Support vector regression, Susceptibility map
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-348795DOI: 10.1016/B978-0-443-15341-9.00004-6Scopus ID: 2-s2.0-85195940620OAI: oai:DiVA.org:kth-348795DiVA, id: diva2:1878706
Merknad

Part of ISBN 9780443153419, 9780443153426

QC 20240701

Tilgjengelig fra: 2024-06-27 Laget: 2024-06-27 Sist oppdatert: 2025-02-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Kalantari, Zahra

Søk i DiVA

Av forfatter/redaktør
Kalantari, Zahra
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 36 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf