Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Blind Federated Learning via Over-the-Air q-QAM
KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Nätverk och systemteknik.ORCID-id: 0000-0003-4519-9204
Uppsala Univ, Dept Informat Technol, S-75105 Uppsala, Sweden.ORCID-id: 0000-0002-4503-4242
KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Nätverk och systemteknik.ORCID-id: 0000-0001-9810-3478
2024 (engelsk)Inngår i: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 23, nr 12, s. 19570-19586Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this work, we investigate federated edge learning over a fading multiple access channel. To alleviate the communication burden between the edge devices and the access point, we introduce a pioneering digital over-the-air computation strategy employing q-ary quadrature amplitude modulation, culminating in a low latency communication scheme. Indeed, we propose a new federated edge learning framework in which edge devices use digital modulation for over-the-air uplink transmission to the edge server while they have no access to the channel state information. Furthermore, we incorporate multiple antennas at the edge server to overcome the fading inherent in wireless communication. We analyze the number of antennas required to mitigate the fading impact effectively. We prove a non-asymptotic upper bound for the mean squared error for the proposed federated learning with digital over-the-air uplink transmissions under both noisy and fading conditions. Leveraging the derived upper bound, we characterize the convergence rate of the learning process of a non-convex loss function in terms of the mean square error of gradients due to the fading channel. Furthermore, we substantiate the theoretical assurances through numerical experiments concerning mean square error and the convergence efficacy of the digital federated edge learning framework. Notably, the results demonstrate that augmenting the number of antennas at the edge server and adopting higher-order modulations improve the model accuracy up to 60%.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE) , 2024. Vol. 23, nr 12, s. 19570-19586
Emneord [en]
Fading channels, Wireless networks, Data models, Computational modeling, Antennas, Quadrature amplitude modulation, Convergence, Servers, Numerical models, Blind federated learning, digital modulation, federated edge learning, over-the-air computation
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-358611DOI: 10.1109/TWC.2024.3485117ISI: 001376014400022Scopus ID: 2-s2.0-85208252412OAI: oai:DiVA.org:kth-358611DiVA, id: diva2:1929383
Merknad

Not duplicate with DiVA 1808256

QC 20250120

Tilgjengelig fra: 2025-01-20 Laget: 2025-01-20 Sist oppdatert: 2025-01-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Razavikia, SaeedBarros da Silva Jr., José MairtonFischione, Carlo

Søk i DiVA

Av forfatter/redaktør
Razavikia, SaeedBarros da Silva Jr., José MairtonFischione, Carlo
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Wireless Communications

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 33 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf