Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Distributed Optimization with Finite Bit Adaptive Quantization for Efficient Communication and Precision Enhancement
The Hong Kong University of Science and Technology (Guangzhou), Artificial Intelligence Thrust of the Information Hub, Guangzhou, China; The Hong Kong University of Science and Technology, Clear Water Bay, Department of Computer Science and Engineering, Hong Kong, China, Clear Water Bay.
Aalto University, School of Electrical Engineering, Department of Electrical Engineering and Automation, Espoo, Finland.
Aalto University, School of Electrical Engineering, Department of Electrical Engineering and Automation, Espoo, Finland; University of Cyprus, School of Engineering, Department of Electrical and Computer Engineering, Nicosia, Cyprus, 1678.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik.ORCID-id: 0000-0001-9940-5929
2024 (engelsk)Inngår i: 2024 IEEE 63rd Conference on Decision and Control, CDC 2024, Institute of Electrical and Electronics Engineers (IEEE) , 2024, s. 2531-2537Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In realistic distributed optimization scenarios, individual nodes possess only partial information and communicate over bandwidth constrained channels. For this reason, the development of efficient distributed algorithms is essential. In our paper we addresses the challenge of unconstrained distributed optimization. In our scenario each node's local function exhibits strong convexity with Lipschitz continuous gradients. The exchange of information between nodes occurs through 3-bit bandwidth-limited channels (i.e., nodes exchange messages represented by a only 3 -bits). Our proposed algorithm respects the network's bandwidth constraints by leveraging zoom-in and zoom-out operations to adjust quantizer parameters dynamically. We show that during our algorithm's operation nodes are able to converge to the exact optimal solution. Furthermore, we show that our algorithm achieves a linear convergence rate to the optimal solution. We conclude the paper with simulations that highlight our algorithm's unique characteristics.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE) , 2024. s. 2531-2537
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-361772DOI: 10.1109/CDC56724.2024.10886815Scopus ID: 2-s2.0-86000666500OAI: oai:DiVA.org:kth-361772DiVA, id: diva2:1948039
Konferanse
63rd IEEE Conference on Decision and Control, CDC 2024, Milan, Italy, Dec 16 2024 - Dec 19 2024
Merknad

Part of ISBN 9798350316339

QC 20250331

Tilgjengelig fra: 2025-03-27 Laget: 2025-03-27 Sist oppdatert: 2025-03-31bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Johansson, Karl H.

Søk i DiVA

Av forfatter/redaktør
Johansson, Karl H.
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 27 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf