Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An adaptive finite element method for the compressible Euler equations
KTH, Skolan för datavetenskap och kommunikation (CSC), Numerisk analys, NA.ORCID-id: 0000-0003-4962-9048
2009 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This work develops a stabilized finite element method for the compressible Euler equations and proves an a posteriori error estimate for the approximated solution. The equations are approximated by the cG(1)cG(1) finite element method with continuous piecewise linear functions in space and time. cG(1)cG(1) gives a second order accuracy in space, and corresponds to a Crank-Nicholson type of discretization in time, resulting in second order accuracy in space, without a stabilization term.

The method is stabilized by componentwise weighted least squares stabilization of the convection terms, and residual based shock capturing. This choice of stabilization gives a symmetric stabilization matrix in the discrete system. The method is successfully implemented for a number of benchmark problems in 1D, 2D and 3D. We observe that cG(1)cG(1) with the above choice of stabilization is robust and converges to an accurate solution with residual based adaptive mesh refinement.

We then extend the General Galerkin framework from incompressible to compressible flow, with duality based a posteriori error estimation of some quantity of interest. The quantities of interest can be stresses, strains, drag and lift forces, surface forces or a mean value of some quantity. In this work we prove a duality based a posteriori error estimate for the compressible equations, as an extension of the earlier work for incompressible flow [25].

The implementation and analysis are validated in computational tests both with respect to the stabilization and the duality based adaptation

 

 

 

sted, utgiver, år, opplag, sider
Stockholm: KTH , 2009. , s. xii, 39
Serie
Trita-CSC-A, ISSN 1653-5723 ; 2009:13
Identifikatorer
URN: urn:nbn:se:kth:diva-10582ISBN: 978-91-7415-365-1 (tryckt)OAI: oai:DiVA.org:kth-10582DiVA, id: diva2:219786
Presentation
2009-06-10, D42, KTH, Lindstedtsvägen 5, Plan 4, Stockholm, 14:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2009-05-28 Laget: 2009-05-28 Sist oppdatert: 2022-12-07bibliografisk kontrollert
Delarbeid
1. A General Galerkin Finite Element Method for the Compressible Euler Equations
Åpne denne publikasjonen i ny fane eller vindu >>A General Galerkin Finite Element Method for the Compressible Euler Equations
2008 (engelsk)Inngår i: SIAM Journal on Scientific Computing, ISSN 1064-8275, E-ISSN 1095-7197Artikkel i tidsskrift (Fagfellevurdert) Submitted
Abstract [en]

In this paper we present a General Galerkin (G2) method for the compressible Euler equations, including turbulent ow. The G2 method presented in this paper is a nite element method with linear approximation in space and time, with componentwise stabilization in the form  of streamline diusion and shock-capturing modi cations. The method conserves mass, momentum  and energy, and we prove an a posteriori version of the 2nd Law of thermodynamics for the method.  We illustrate the method for a laminar shock tube problem for which there exists an exact analytical  solution, and also for a turbulent flow problem

Emneord
General Galerkin G2 method, stabilized finite element method, turbulent compressible flow, second law of thermodynamics
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-25410 (URN)
Merknad
QS 20120314Tilgjengelig fra: 2010-10-20 Laget: 2010-10-20 Sist oppdatert: 2022-12-07bibliografisk kontrollert
2. An adaptive finite element method for the compressible Euler equations
Åpne denne publikasjonen i ny fane eller vindu >>An adaptive finite element method for the compressible Euler equations
2010 (engelsk)Inngår i: INT J NUMER METHOD FLUID, 2010, Vol. 64, nr 10-12, s. 1102-1128Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We present an adaptive finite element method for the compressible Euler equations, based on a posteriori error estimation of a quantity of interest in terms of a dual problem for the linearized equations. Continuous piecewise linear approximation is used in space and time, with componentwise weighted least-squares stabilization of convection terms and residual-based shock-capturing. The adaptive algorithm is demonstrated numerically for the quantity of interest being the drag force on a body.

Emneord
adaptive finite element method, a posteriori error estimation, dual problem, compressible euler equations, circular cylinder, wedge, sphere
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-25412 (URN)
Konferanse
15th International Conference on Finite Elements in Flow Problems Tokyo, JAPAN, APR 01-03, 2009
Merknad
QC 20101020Tilgjengelig fra: 2010-10-20 Laget: 2010-10-20 Sist oppdatert: 2024-03-15bibliografisk kontrollert

Open Access i DiVA

fulltekst(12469 kB)5727 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 12469 kBChecksum SHA-512
818747ceb000bd78b0909307c0b26ab84e70b05783eea0d911b149dae844d64ef9edbdfeee76b3cf0956d9230dad11568d043d5e406d14d2be691bc6d9c56b09
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Nazarov, Murtazo
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 5728 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 1150 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf