Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Universal asymptotics in hyperbolicity breakdown
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).
2008 (engelsk)Inngår i: Nonlinearity, ISSN 0951-7715, E-ISSN 1361-6544, Vol. 21, nr 3, s. 557-586Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We study a scenario for the disappearance of hyperbolicity of invariant tori in a class of quasi-periodic systems. In this scenario, the system loses hyperbolicity because two invariant directions come close to each other, losing their regularity. In a recent paper, based on numerical results, Haro and de la Llave (2006 Chaos 16 013120) discovered a quantitative universality in this scenario, namely, that the minimal angle between the two invariant directions has a power law dependence on the parameters and the exponents of the power law are universal. We present an analytic proof of this result.

sted, utgiver, år, opplag, sider
2008. Vol. 21, nr 3, s. 557-586
Emneord [en]
spectral subbundles
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-17401DOI: 10.1088/0951-7715/21/3/010ISI: 000254305500012Scopus ID: 2-s2.0-43049091900OAI: oai:DiVA.org:kth-17401DiVA, id: diva2:335445
Merknad
QC 20100525Tilgjengelig fra: 2010-08-05 Laget: 2010-08-05 Sist oppdatert: 2022-06-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopushttp://dx.doi.org/10.1088/0951-7715/21/3/010

Søk i DiVA

Av forfatter/redaktør
Bjerklöv, KristianSaprykina, Maria
Av organisasjonen
I samme tidsskrift
Nonlinearity

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 127 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf