Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Isolated Seven-Coordinate Ru(IV) Dimer Complex with HOHOH (-) Bridging Ligand as an Intermediate for Catalytic Water Oxidation
KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.ORCID-id: 0000-0003-1662-5817
KTH, Skolan för kemivetenskap (CHE), Kemi, Oorganisk kemi.
KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.ORCID-id: 0000-0002-4521-2870
2009 (engelsk)Inngår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 131, nr 30, s. 10397-+Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

With the inspiration from an oxygen evolving complex (OEC) in Photosystern II (PSII), a mononuclear Ru(II) complex with a tetradentate ligand containing two carboxylate groups has been synthesized and structurally characterized. This Ru(II) complex showed efficient catalytic properties toward water oxidation by the chemical oxidant cerium(IV) ammonium nitrate. During the process of catalytic water oxidation, Ru(III) and Ru(IV) species have been successfully isolated as intermediates. To our surprise, X-ray crystallography together with HR-MS revealed that the Ru(IV) species is a seven-coordinate Ru(IV) dimer complex containing a [HOHOH](-) bridging ligand. This bridging ligand has a short O center dot center dot center dot O distance and is hydrogen bonded to two water molecules. The discovery of this very uncommon seven-coordinate Ru(IV) dimer together with a hydrogen bonding network may contribute to a deeper understanding of the mechanism for catalytic water oxidation. It will also provide new possibilities for the design of more efficient catalysts for water oxidation, which is the key step for solar energy conversion into hydrogen by tight-driven water splitting, the ultimate challenge in artificial photosynthesis.

sted, utgiver, år, opplag, sider
2009. Vol. 131, nr 30, s. 10397-+
Identifikatorer
URN: urn:nbn:se:kth:diva-18657DOI: 10.1021/ja9034686ISI: 000268644400031Scopus ID: 2-s2.0-68049108505OAI: oai:DiVA.org:kth-18657DiVA, id: diva2:336704
Merknad
QC 20100525Tilgjengelig fra: 2010-08-05 Laget: 2010-08-05 Sist oppdatert: 2017-12-12bibliografisk kontrollert
Inngår i avhandling
1. Artificial Water Splitting: Ruthenium Complexes for Water Oxidation
Åpne denne publikasjonen i ny fane eller vindu >>Artificial Water Splitting: Ruthenium Complexes for Water Oxidation
2011 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis concerns the development and study of Ru-based water oxidation catalysts (WOCs) which are the essential components for solar energy conversion to fuels. The first chapter gives a general introduction about the field of homogenous water oxidation catalysis, including the catalytic mechanisms and the catalytic activities of some selected WOCs as well as the concerns of catalyst design. The second chapter describes a family of mononuclear Ru complexes [Ru(pdc)L3] (H2pdc = 2,6-pyridinedicarboxylic acid; L = pyridyl ligands) towards water oxidation. The negatively charged pdc2 dramatically lowers the oxidation potentials of Ru complexes, accelerates the ligand exchange process and enhances the catalytic activity towards water oxidation. A Ru aqua species [Ru(pdc)L2(OH2)] was proposed as the real catalyst. The third chapter describes the analogues of [Ru(terpy)L3]2+ (terpy = 2,2′:6′,2′′-terpyridine). Through the structural tailor, the ligand effect on the electrochemical and catalytic properties of these Ru complexes was studied. Mechanistic studies suggested that these Ru-N6 complexes were pre-catalysts and the Ru-aqua species were the real WOCs. The forth chapter describes a family of fast WOCs [Ru(bda)L2] (H2bda = 2,2′-bipyridine-6,6′-dicarboxylic acid). Catalytic mechanisms were thoroughly investigated by electrochemical, kinetic and theoretical studies. The main contributions of this work to the field of water oxidation are (i) the recorded high reaction rate of 469 s−1; (ii) the involvement of seven-coordinate Ru species in the catalytic cycles; (iii) the O-O bond formation pathway via direct coupling of two Ru=O units and (iv) non-covalent effects boosting up the reaction rate. The fifth chapter is about visible light-driven water oxidation using a three component system including a WOC, a photosensitizer and a sacrificial electron acceptor. Light-driven water oxidation was successfully demonstrated using our Ru-based catalysts.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2011. s. 80
Serie
Trita-CHE-Report, ISSN 1654-1081 ; 2011:48
Emneord
water oxidation, ruthenium, electrochemistry, DFT calculation, photoelectrochemistry, negatively charged ligand, catalyst
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-40848 (URN)978-91-7501-083-0 (ISBN)
Disputas
2011-10-07, E3, Osquars backe 14, KTH, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad
QC 20110922Tilgjengelig fra: 2011-09-22 Laget: 2011-09-21 Sist oppdatert: 2011-09-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Duan, LeleSun, Licheng

Søk i DiVA

Av forfatter/redaktør
Duan, LeleFischer, AndreasXu, YunhuaSun, Licheng
Av organisasjonen
I samme tidsskrift
Journal of the American Chemical Society

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 318 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf