Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Core-Core Dynamics in Spin Vortex Pairs
KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Nanostrukturfysik.
KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Nanostrukturfysik.ORCID-id: 0000-0002-9993-4748
Institute of Magnetism, Ukrainian Academy of Science.
Vise andre og tillknytning
2012 (engelsk)Inngår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 109, nr 9, s. 097204-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We investigate nanopillars in which two thin ferromagnetic particles are separated by a nanometer thin nonmagnetic spacer and can be set into stable spin vortex-pair configurations. We find that the previously unexplored limit of strong vortex core-core coupling can dominate the spin dynamics in the system. We observe experimentally and explain analytically and numerically how the 0.2 GHz gyrational resonance modes of the individual vortices are transformed into a 2 GHz collective rotational resonance mode in the configurations where the two cores form a bound pair.

sted, utgiver, år, opplag, sider
2012. Vol. 109, nr 9, s. 097204-
Emneord [en]
Magnetic Vortex, Motion, Excitations, Reversal, Permalloy, Vortices, Dots
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-27197DOI: 10.1103/PhysRevLett.109.097204ISI: 000308016200009Scopus ID: 2-s2.0-84865603452OAI: oai:DiVA.org:kth-27197DiVA, id: diva2:375741
Forskningsfinansiär
Swedish Research Council
Merknad

QC 20101209. Updated from manuscript to article in journal.

Tilgjengelig fra: 2012-06-13 Laget: 2010-12-09 Sist oppdatert: 2017-12-11bibliografisk kontrollert
Inngår i avhandling
1. Resonant switching and vortex dynamics in spin-flop bi-layers
Åpne denne publikasjonen i ny fane eller vindu >>Resonant switching and vortex dynamics in spin-flop bi-layers
2010 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis is a study of the static and dynamic behavior of the magne-tization in spin-flop bi-layers, which consist of two soft ferromagnetic layerscoupled by dipolar forces through a thin nonmagnetic spacer. The focus ofthe work is three fold: collective spin dynamics in the anti-parallel groundstate; resonant switching in the presence of thermal agitation; and static anddynamic behavior of the system in the vortex-pair state, with a particularemphasis on the interlayer core-core interaction.

Two collective spin-flop resonance modes are observed and interpreted asacoustical and optical spin precessions, in which the moments of the two lay-ers oscillate in phase and out of phase, respectively. An analytical macrospinmodel is developed to analyze the experimental results and is found to ac-curately predict the resonance frequencies and their field dependence in thelow-field anti-parallel state and the high-field near saturated state. A micro-magnetic model is developed and successfully explains the static and dynamicbehavior of the system in the entire field range, including the C- and S-typespin-perturbed scissor state of the bi-layer at intermediate fields.

The optical spin-flop resonance at 3-4 GHz is used to demonstrate resonantswitching in the system, in the range of the applied field where quasi-staticswitching is forbidden. An off-axis field of relatively small amplitude canexcite large-angle scissor-like oscillations at the optical resonance frequency,which can result in a full 180-degree reversal, with the two moments switchingpast each other into the mirror anti-parallel state. It is found that the switch-ing probability increases with increasing the duration of the microwave fieldpulse, which shows that the resonant switching process is affected by thermalagitation. Micromagnetic modeling incorporating the effect of temperature isperformed and is in good agreement with the experimental results.

Vortex pair states in spin-flop bi-layers are produced using high amplitudefield pulses near the optical spin resonance in the system. The stable vortex-pair states, 16 in total, of which 4 sub-classes are non-degenerate in energy, areidentified and investigated using static and dynamic applied fields. For AP-chirality vortex-pair states, the system can be studied while the two vortexcores are coupled and decoupled in a single field sweep. It is found thatthe dynamics of the AP-chirality vortex pairs is critically determined by thepolarizations of the two vortex cores and the resulting attractive or repulsivecore-core interaction. The measured spin resonance modes in the system areinterpreted as gyrational, rotational, and vibrational resonances with the helpof the analytical and micromagnetic models developed herein.

A significant effort during this project was made to build two instrumentsfor surface and transport characterization of magnetic nanostructures: a high-current Scanning Tunneling Microscope for studying transport in magneticpoint contacts, and a Current In Plane Tunneling instrument for characteriz-ing unpatterned magnetic tunnel junctions. The design and implementationof the instruments as well as the test data are presented.

sted, utgiver, år, opplag, sider
Stockholm: KTH, 2010. s. v, 80
Serie
Trita-FYS, ISSN 0280-316X ; 2010:74
Emneord
spin-dynamics, MRAM, vortex, switching
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-27193 (URN)978-91-7415-840-3 (ISBN)
Disputas
2010-12-17, FB:42, AlbaNova University Center, KTH,Roslagstullbacken 21, Stockholm, 17:14 (engelsk)
Opponent
Veileder
Merknad
QC 20101209Tilgjengelig fra: 2010-12-09 Laget: 2010-12-08 Sist oppdatert: 2010-12-09bibliografisk kontrollert
2. Static and dynamic properties of uniform- and vortex-states in synthetic nanomagnets
Åpne denne publikasjonen i ny fane eller vindu >>Static and dynamic properties of uniform- and vortex-states in synthetic nanomagnets
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Synthetic antiferromagnets (SAFs) consist of two thin ferromagnetic particles separated by a thin nonmagnetic spacer. The magnetic moments of the two particles couple antiparallel via dipolar interactions, with the interlayer exchange interaction suppressed by a suitable choice of the spacer material. The SAF system studied in this thesis contains thin elliptical-in-the-plane permalloy particles magnetized uniformly and mutually antiparallel in the ground state. A SAF can also exhibit long-lived metastable nonuniform magnetization states, such as spin-vortex pairs. The thesis explores hysteresis and spin dynamics in: (i) uniformly magnetized SAFs and (ii) SAFs in the vortex-pair state.

The uniformly magnetized antiparallel ground state of a symmetrical SAF, having identical ferromagnetic particles, is double  degenerate. The resonance modes are in-phase (acoustical) and out-of-phase (optical) oscillations of the magnetic moments. Asymmetry between the two magnetic layers is shown to lift the degeneracy of the antiparallel ground state, which in the static regime results in unequal stability of the two states. In the dynamic regime, the asymmetries are shown to result in a splitting of the resonance frequency of the new non-degenerate ground states. The resulting resonant-mode splitting can be used to selectively switch between the antiparallel ground states by resonant microwave or thermal activation of the system.

The static and dynamic properties of the vortex pairs in SAFs were found to be strongly dependent on the relative orientation of the vortex chiralities and vortex-core polarizations in the two ferromagnetic particles of the SAF. For parallel core polarizations, a strong monopole-like core-core interaction is found to dominate the magnetic properties of the system, increasing the characteristic resonance frequency by an order of magnitude.  Analytical theory and numerical micromagnetic simulations are used to explain the measured responses.

sted, utgiver, år, opplag, sider
KTH Royal Institute of Technology, 2016. s. 74
Serie
TRITA-FYS, ISSN 0280-316X
HSV kategori
Forskningsprogram
Fysik
Identifikatorer
urn:nbn:se:kth:diva-187473 (URN)978-91-7729-018-6 (ISBN)
Disputas
2016-06-15, FB54, Roslagstullsbacken 21, Stockholm, 13:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Swedish Research Council, 2014-4548Stiftelsen Olle Engkvist Byggmästare, 2014-STE
Merknad

QC 20160524

Tilgjengelig fra: 2016-05-24 Laget: 2016-05-24 Sist oppdatert: 2016-05-25bibliografisk kontrollert

Open Access i DiVA

fulltext(1786 kB)617 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1786 kBChecksum SHA-512
8234c865714ecc310a0bc1a639ff3193ad0e3abdb618466725003f87fa8fe0c14553414fc265d7de30d8dc1c12bd7f4a13bd796a4d47ebd43230fdf349930345
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopusArxiv

Personposter BETA

Koop, BjörnKorenivski, Vladislav

Søk i DiVA

Av forfatter/redaktør
Cherepov, SergiyKoop, BjörnKorenivski, Vladislav
Av organisasjonen
I samme tidsskrift
Physical Review Letters

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 617 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 312 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf