Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Managing the supercell approximation for charged defects in semiconductors: Finite-size scaling, charge correction factors, the band-gap problem, and the ab initio dielectric constant
KTH, Skolan för informations- och kommunikationsteknik (ICT), Materialfysik.
2006 (engelsk)Inngår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 73, nr 3, s. 035215-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The errors arising in ab initio density functional theory studies of semiconductor point defects using the supercell approximation are analyzed. It is demonstrated that (a) the leading finite size errors are inverse linear and inverse cubic in the supercell size and (b) finite size scaling over a series of supercells gives reliable isolated charged defect formation energies to around +/- 0.05 eV. The scaled results are used to test three correction methods. The Makov-Payne method is insufficient, but combined with the scaling parameters yields an ab initio dielectric constant of 11.6 +/- 4.1 for InP. Gamma point corrections for defect level dispersion are completely incorrect, even for shallow levels, but realigning the total potential in real-space between defect and bulk cells actually corrects the electrostatic defect-defect interaction errors as well. Isolated defect energies to +/- 0.1 eV are then obtained using a 64 atom supercell, though this does not improve for larger cells. Finally, finite size scaling of known dopant levels shows how to treat the band gap problem: in <= 200 atom supercells with no corrections, continuing to consider levels into the theoretical conduction band (extended gap) comes closest to experiment. However, for larger cells or when supercell approximation errors are removed, a scissors scheme stretching the theoretical band gap onto the experimental one is in fact correct.

sted, utgiver, år, opplag, sider
2006. Vol. 73, nr 3, s. 035215-
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-37469DOI: 10.1103/PhysRevB.73.035215ISI: 000235009500085Scopus ID: 2-s2.0-33244472623OAI: oai:DiVA.org:kth-37469DiVA, id: diva2:433969
Tilgjengelig fra: 2011-08-12 Laget: 2011-08-12 Sist oppdatert: 2017-12-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Castleton, Christopher W. M.
Av organisasjonen
I samme tidsskrift
Physical Review B. Condensed Matter and Materials Physics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 46 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf