Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
AFM surface force measurements conducted with silica in C(n)TACl solutions: Effect of chain length on hydrophobic force
KTH, Skolan för kemivetenskap (CHE), Kemi, Ytkemi.
2007 (engelsk)Inngår i: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 300, nr 3, s. 335-345Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Surface forces were measured using an AFM with silica surfaces immersed in C(n)TACl (n = 12-18) solutions in the absence of added salt. The results showed long-range attractive forces that cannot be explained by the DLVO theory. The long-range attractions increased with increasing surfactant concentration, reaching a maximum at the point of charge neutralization (p.c.n.) and then decreased. The long-range forces decayed exponentially, with the decay lengths increasing from 3 to 32 run as the chain length of the surfactants increased from C-12 to C-18. The measured forces can be fitted to the charged-patch model of Miklavic et al. [S.J. Miklavic, D.Y.C. Chan, L.R. White, T.W. Healy, J. Phys. Chem. 98 (1994) 9022-9032] by assuming patch sizes that are much larger than the values reported in the literature. It was found that the decay length decreases linearly with the effective concentration of the CH2/CH3 groups of the C(n)TACl homologues raised to the power of -1/2, which is in line with the Eriksson et al.'s hydrophobic force model derived using a mean-field approach. It appears, therefore, that the long-range attractions observed in the present work are hydrophobic forces originating from changes in water structure across the thin surfactant solution film between the silica surfaces. It is conceivable that hydrocarbon chains in solution disrupt the surface-induced water structure and cause a decrease in hydrophobic force. This observation may also provide an explanation for the very long-range forces observed with silylated, LB-deposited, and thiol-coated surfaces.

sted, utgiver, år, opplag, sider
2007. Vol. 300, nr 3, s. 335-345
Emneord [en]
C(n)TACl homologues, long-range attraction, hydrophobic force, point of charge neutralization, charged patch, film tension, waterstructure
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-39565DOI: 10.1016/j.colsurfa.2007.01.048ISI: 000246748500012Scopus ID: 2-s2.0-34247104086OAI: oai:DiVA.org:kth-39565DiVA, id: diva2:442026
Merknad
13th International Conference on Surface Forces Location: Moscow, Russia, Date: JUN 28-JUL 04, 2006 Tilgjengelig fra: 2011-09-20 Laget: 2011-09-12 Sist oppdatert: 2017-12-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Eriksson, Jan Christer
Av organisasjonen
I samme tidsskrift
Colloids and Surfaces A: Physicochemical and Engineering Aspects

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 107 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf