Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Unsupervised Fuzzy Clustering Using Weighted Incremental Neural Networks
Centre for Image Analysis, Uppsala University.ORCID-id: 0000-0002-1831-9285
2004 (engelsk)Inngår i: International Journal of Neural Systems, ISSN 0129-0657, E-ISSN 1793-6462, Vol. 14, nr 6, s. 355-371Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A new more efficient variant of a recently developed algorithm for unsupervised fuzzy clustering is introduced. A Weighted Incremental Neural Network (WINN) is introduced and used for this purpose. The new approach is called FC-WINN (Fuzzy Clustering using WINN). The WINN algorithm produces a net of nodes connected by edges, which reflects and preserves the topology of the input data set. Additional weights, which are proportional to the local densities in input space, are associated with the resulting nodes and edges to store useful information about the topological relations in the given input data set. A fuzziness factor, proportional to the connectedness of the net, is introduced in the system. A watershed-like procedure is used to cluster the resulting net. The number of the resulting clusters is determined by this procedure. Only two parameters must be chosen by the user for the FC-WINN algorithm to determine the resolution and the connectedness of the net. Other parameters that must be specified are those which are necessary for the used incremental neural network, which is a modified version of the Growing Neural Gas algorithm (GNG). The FC-WINN algorithm is computationally efficient when compared to other approaches for clustering large high-dimensional data sets.

sted, utgiver, år, opplag, sider
2004. Vol. 14, nr 6, s. 355-371
Emneord [en]
Unsupervised fuzzy clustering; unsupervised image segmentation; neuro-fuzzy systems; Growing Neural Gas (GNG); incremental neural networks; watersheds; data reduction
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-67400DOI: 10.1142/S0129065704002121OAI: oai:DiVA.org:kth-67400DiVA, id: diva2:485220
Merknad

QC 20120127

Tilgjengelig fra: 2012-01-28 Laget: 2012-01-27 Sist oppdatert: 2017-12-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Hamid Muhammed, Hamed

Søk i DiVA

Av forfatter/redaktør
Hamid Muhammed, Hamed
I samme tidsskrift
International Journal of Neural Systems

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 26 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf