Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Test Turbine Measurements and Comparison with Meanline and Throughflow Calculations
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
2012 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

This thesis is a collaboration between Siemens Industrial Turbomachinery(SIT) and Royal Institute of Technology(KTH). It is aimed to study and compare the outputs of two different computational approaches in axial gas turbine design procedure with the data obtained from experimental work on a test turbine. The main focus during this research is to extend the available test databank and to further understand and investigate the turbine stage efficiency, mass flow parameters and reaction degree under different working conditions. Meanwhile the concept and effect of different loss mechanisms and models will be briefly studied.

 The experimental part was performed at Heat and Power  Technology department on a single stage test turbine in its full admission mode. Three different pressure ratios were tested. For the medium pressure ratio a constant temperature anemometry (CTA) method was deployed in two cases, with and without turbulence grid, to determine the effect of free-stream turbulence intensity on the investigated parameters. During the test campaign the raw gathered data was processed with online tools and also they served as boundary condition for the computational codes later.

 The computational scope includes a one-dimensional design approach known as mean-line calculation and also a two-dimensional method known as throughflow calculation. An in-house SIT software, CATO, generated the stage geometry (vane, blade and the channel) and then two other internal computational codes, MAC1 and BETA2, were employed for the one-dimensional and two-dimensional computations respectively. It was observed that to obtain more accurate mass flow predictions a certain level of channel blockage should be implemented to represent the boundary layer development and secondary flow which is typically around 2%. The codes are also equipped with two options to predict the friction loss: One is a more empirical correlation named as the Old approach in SIT manuals and the other works based on allocation of boundary layer transition point, named as BL in the present thesis. Simulations were done by use of both approaches and it turned out that the latter works more accurately if it is provided with appropriate transition point and blockage estimation.

 The measured data also suggests the idea that the transition point of the vane and blade is not affected by a change in turbulence intensity at least up to 6% in the tested Reynolds numbers, . Amongst different solutions the one which used BL approach and constant transition point (while the turbulence intensity changed) managed to predict this behavior. Also it was investigated and revealed that the codes inherently predict poor results in off-design loadings which is mainly due to positive incidence angle in addition to high spanwise gradient of the flow parameters.

sted, utgiver, år, opplag, sider
2012.
Emneord [en]
Gas Turbine, Meanline, Throughflow
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-104578OAI: oai:DiVA.org:kth-104578DiVA, id: diva2:565154
Eksternt samarbeid
Siemens Industrial Turbomachinery(SIT)
Presentation
2012-06-19, ITM-EGI-M273, Brinellvägen 68, Stockholm, 12:00 (engelsk)
Uppsök
Technology
Veileder
Examiner
Tilgjengelig fra: 2012-11-27 Laget: 2012-11-06 Sist oppdatert: 2022-06-24bibliografisk kontrollert

Open Access i DiVA

Navid_Mikaillian-MScThesis(4858 kB)5866 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4858 kBChecksum SHA-512
0df44d508434c79ce3c40ac2c5035ea6805ba06b1dfb9f6fde47ddd44a8b768ff02f6391da93ecb91b5898919bcadcd4c1972364498eddc4c3a344ef28ece95b
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 5872 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 724 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf