Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Continuous-time distributed optimization of homogenous dynamics
KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.
KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.
KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0001-9940-5929
2013 (engelsk)Inngår i: 2013 51st Annual Allerton Conference on Communication, Control, and Computing, Allerton 2013, IEEE conference proceedings, 2013, s. 520-527Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper makes an attempt to explore the fundamental properties of distributed methods for minimizing a sum of objective functions with each component only known to a particular node, given a certain level of node knowledge and computation capacity. The information each node receives from its neighbors can be any nonlinear function of its neighbors' states as long as the function takes value zero within the local consensus manifold. Each node also observes the gradient of its own objective function at its current state. The update dynamics of each node is a first-order integrator. The admissible control input of each node is homogeneous, given by a binary function with each variable corresponding to the neighboring term and the gradient term, respectively. The function determining the control law is assumed to be injective when the first variable is fixed to zero. It is proven that there exists a control rule which guarantees global optimal consensus if and only if the solution sets of the local objectives admit a nonempty intersection set for fixed strongly connected graphs. Then we show that for any tolerated error, we can find a simple control rule that guarantees global optimal consensus within this error for fixed, bidirectional, and connected graphs under mild conditions. For time-varying graphs, we show that optimal consensus can always be achieved by a simple control rule as long as the graph is uniformly jointly strongly connected and the nonempty intersection condition holds. The results illustrate that nonempty intersection for the local optimal solution sets is a critical condition for distributed optimization using consensus processing to connect the information over the nodes.

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2013. s. 520-527
Emneord [en]
Distributed optimization, Dynamical Systems, Multi-agent systems, Optimal consensus
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-147499DOI: 10.1109/Allerton.2013.6736569ISI: 000350802400073Scopus ID: 2-s2.0-84897744582ISBN: 978-147993409-6 (tryckt)OAI: oai:DiVA.org:kth-147499DiVA, id: diva2:730274
Konferanse
51st Annual Allerton Conference on Communication, Control, and Computing, Allerton 2013, 2 October 2013 through 4 October 2013, Monticello, IL, United States
Merknad

QC 20140627

Tilgjengelig fra: 2014-06-27 Laget: 2014-06-27 Sist oppdatert: 2015-12-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Johansson, Karl Henrik

Søk i DiVA

Av forfatter/redaktør
Shi, GuodongProutière, AlexandreJohansson, Karl Henrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 19 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf