Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bayesian estimation of Dirichlet mixture model with variational inference
KTH, Skolan för elektro- och systemteknik (EES), Kommunikationsteori.
KTH, Skolan för elektro- och systemteknik (EES), Kommunikationsteori.
KTH, Skolan för elektro- och systemteknik (EES), Kommunikationsteori.ORCID-id: 0000-0002-7807-5681
Vise andre og tillknytning
2014 (engelsk)Inngår i: Pattern Recognition, ISSN 0031-3203, E-ISSN 1873-5142, Vol. 47, nr 9, s. 3143-3157Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In statistical modeling, parameter estimation is an essential and challengeable task. Estimation of the parameters in the Dirichlet mixture model (DMM) is analytically intractable, due to the integral expressions of the gamma function and its corresponding derivatives. We introduce a Bayesian estimation strategy to estimate the posterior distribution of the parameters in DMM. By assuming the gamma distribution as the prior to each parameter, we approximate both the prior and the posterior distribution of the parameters with a product of several mutually independent gamma distributions. The extended factorized approximation method is applied to introduce a single lower-bound to the variational objective function and an analytically tractable estimation solution is derived. Moreover, there is only one function that is maximized during iterations and, therefore, the convergence of the proposed algorithm is theoretically guaranteed. With synthesized data, the proposed method shows the advantages over the EM-based method and the previously proposed Bayesian estimation method. With two important multimedia signal processing applications, the good performance of the proposed Bayesian estimation method is demonstrated.

sted, utgiver, år, opplag, sider
2014. Vol. 47, nr 9, s. 3143-3157
Emneord [en]
Bayesian estimation, Variational inference, Extended factorized approximation, Relative convexity, Dirichlet distribution, Gamma prior, Mixture modeling, LSF quantization, Multiview depth image enhancement
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-147714DOI: 10.1016/j.patcog.2014.04.002ISI: 000336872000028Scopus ID: 2-s2.0-84900821630OAI: oai:DiVA.org:kth-147714DiVA, id: diva2:732938
Merknad

QC 20140707

Tilgjengelig fra: 2014-07-07 Laget: 2014-07-03 Sist oppdatert: 2017-12-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Flierl, Markus

Søk i DiVA

Av forfatter/redaktør
Rana, Pravin KumarTaghia, JalilFlierl, MarkusLeijon, Arne
Av organisasjonen
I samme tidsskrift
Pattern Recognition

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 96 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf