Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Atom-Probe Tomography Study of Phase Separation in Fe-Cr Based Steels
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Metallografi.ORCID-id: 0000-0002-4180-2486
2014 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Stainless steels are very important engineering materials in a variety of applications such as in the food industry and nuclear power plants due to their combination of good mechanical properties and high corrosion resistance. However, ferrite-containing stainless steels are sensitive to the so-called ‘475°C embrittlement’, which is induced by phase separation of the ferrite phase, where it decomposes into Fe-rich ferrite (α) and Cr-rich ferrite (α'). The phase separation is accompanied with a severe loss of toughness. Therefore, the upper service temperature of ferrite-containing stainless steels in industrial applications has been limited to around 250°.

In the present work, Fe-Cr based steels were mainly investigated by atom probe tomography. A new method based on the radial distribution function (RDF) was proposed to quantitatively evaluate both the wavelength and amplitude of phase separation in Fe-Cr alloys from the atom probe tomography data. Moreover, a simplified equation was derived to calculate the amplitude of phase separation. The wavelength and amplitude was compared with evaluations using the auto-correlation function (ACF) and Langer-Bar-on-Miller (LBM) method, respectively. The results show that the commonly used LBM method underestimates the amplitude of phase separation and the wavelengths obtained by RDF shows a good exponential relation with aging time which is expected from the theory. The RDF is also an effective method in detecting the phenomena of clustering and elemental partitioning.

Furthermore, atom probe tomography and the developed quantitative analysis method have been applied to investigate the influence of different factors on the phase separation in Fe-Cr based alloys by the help of mainly mechanical property tests and atom probe tomography analysis. The study shows that: (1) the external tensile stress during aging enhances the phase separation in ferrite. (2) Phase separation in weld bead metals decomposes more rapidly than both the heat-affected-zone metals and the base metals mainly due to the high density of dislocations in the welding bead metals which could facilitate the diffusion. (3) The results show that Ni and Mn can enhance the phase separation comparing to the binary Fe-Cr alloy whereas Cu forms clusters during aging. (4) Initial clustering of Cr atoms was found after homogenization. Two factors, namely, clustering of Cr above the miscibility gap and clustering during quenching was suggested as the two responsible mechanisms. (5) The homogenization temperatures significantly influence the evolution of phase separation in Fe-46.5at.%Cr.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2014. , s. xii, 54
Emneord [en]
Fe-Cr alloys, Ferritic stainless steels, Spinodal decomposition, Phase separation, Atom probe tomography, Radial distribution function (RDF)
HSV kategori
Forskningsprogram
Teknisk materialvetenskap
Identifikatorer
URN: urn:nbn:se:kth:diva-150796ISBN: 978-91-7595-195-9 (tryckt)OAI: oai:DiVA.org:kth-150796DiVA, id: diva2:745089
Disputas
2014-09-29, F3, Lindstedsvägen 26, Kungliga Tekniska Högskolan, Stockholm, Stockhol, 10:00 (engelsk)
Opponent
Veileder
Prosjekter
Spinodal Project
Merknad

QC 20140910

Tilgjengelig fra: 2014-09-10 Laget: 2014-09-09 Sist oppdatert: 2023-12-07bibliografisk kontrollert
Delarbeid
1. Quantitative Evaluation of Spinodal Decomposition in Fe-Cr by Atom Probe Tomography and Radial Distribution Function Analysis
Åpne denne publikasjonen i ny fane eller vindu >>Quantitative Evaluation of Spinodal Decomposition in Fe-Cr by Atom Probe Tomography and Radial Distribution Function Analysis
2013 (engelsk)Inngår i: Microscopy and Microanalysis, ISSN 1431-9276, E-ISSN 1435-8115, Vol. 19, nr 3, s. 665-675Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Nanostructure evolution during low temperature aging of three binary Fe-Cr alloys has been investigated by atom probe tomography. A new method based on radial distribution function (RDF) analysis to quantify the composition wavelength and amplitude of spinodal decomposition is proposed. Wavelengths estimated from RDF have a power-law type evolution and are in reasonable agreement with wavelengths estimated using other more conventional methods. The main advantages of the proposed method are the following: (1) Selecting a box size to generate the frequency diagram, which is known to generate bias in the evaluation of amplitude, is avoided. (2) The determination of amplitude is systematic and utilizes the wavelength evaluated first to subsequently evaluate the amplitude. (3) The RDF is capable of representing very subtle decomposition, which is not possible using frequency diagrams, and thus a proposed theoretical treatment of the experimental RDF creates the possibility to determine amplitude at very early stages of spinodal decomposition.

Emneord
atom probe tomography (APT), spinodal decomposition, radial distribution function (RDF), phase separation, stainless steels
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-124038 (URN)10.1017/S1431927613000470 (DOI)000319126300018 ()23642804 (PubMedID)2-s2.0-84877973197 (Scopus ID)
Forskningsfinansiär
Swedish Research Council, 621-2009-5289Vinnova
Merknad

QC 20130628. Updated from "Accepted" to "Published"

Tilgjengelig fra: 2013-06-28 Laget: 2013-06-25 Sist oppdatert: 2022-06-23bibliografisk kontrollert
2. Observations of copper clustering in a 25Cr-7Ni super duplex stainless steel during low-temperature aging under load
Åpne denne publikasjonen i ny fane eller vindu >>Observations of copper clustering in a 25Cr-7Ni super duplex stainless steel during low-temperature aging under load
Vise andre…
2012 (engelsk)Inngår i: Philosophical Magazine Letters, ISSN 0950-0839, E-ISSN 1362-3036, Vol. 92, nr 7, s. 336-343Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Atom-probe tomography was used to investigate phase separation and copper (Cu) clustering in the ferrite phase of a 25Cr-7Ni super duplex stainless steel. The steel was subjected to a tensile load during aging at 325 degrees C for 5800 h. The degree of phase separation into alpha (Fe-rich) and alpha' (Cr-rich) was small, but still, it was the highest in the steel subjected to the highest load. Cu was found to cluster, and the number density of clusters increased with increasing load. In the material subjected to the highest load, Cu was enriched in regions that were neither Fe-rich nor Cr-rich. These regions also had the highest number density of Cu clusters.

Emneord
3DAP, stainless steels, phase decomposition, clusters, copper, duplex steels
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-85491 (URN)10.1080/09500839.2012.672773 (DOI)000305682200004 ()2-s2.0-84863190061 (Scopus ID)
Forskningsfinansiär
Swedish Research Council, 621-2009-5289Vinnova
Merknad

QC 20140910

Tilgjengelig fra: 2012-02-13 Laget: 2012-02-13 Sist oppdatert: 2022-06-24bibliografisk kontrollert
3. Concurrent phase separation and clustering in the ferrite phase during low temperature stress aging of duplex stainless steel weldments
Åpne denne publikasjonen i ny fane eller vindu >>Concurrent phase separation and clustering in the ferrite phase during low temperature stress aging of duplex stainless steel weldments
Vise andre…
2012 (engelsk)Inngår i: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 60, nr 16, s. 5818-5827Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The concurrent phase separation and clustering of alloying elements in the ferrite phase of duplex stainless steel weldments after stress aging at 325 degrees C have been investigated by atom probe tomography analysis. Both phase separation, into Fe-rich and Cr-rich ferrite, and solute clustering were observed. Phase separation in the heat-affected zone (HAZ) is most pronounced in the high alloyed SAF 2507, followed by SAF 2205 and SAF 2304. Moreover Cu clustering was observed in the HAZ of SAF 2507. However, decomposition in the weld bead (25.10.4L) was more pronounced than in the HAZs, with both phase separation and clustering of Ni-Mn-Si-Cu. The observed differences in the decomposition behaviors in the HAZ and weld bead can be attributed to the high Ni content and the characteristic microstructure of the weld bead with high internal strains. In addition, an applied tensile stress during aging of weldments has been found to further promote the kinetics of phase separation and clustering.

Emneord
Duplex stainless steels, Phase separation, Atom probe tomography, Spinodal decomposition, Clustering
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-104382 (URN)10.1016/j.actamat.2012.07.022 (DOI)000309438500016 ()2-s2.0-84866129827 (Scopus ID)
Forskningsfinansiär
Swedish Research Council, 621-2009-5289Vinnova
Merknad

QC 20121105

Tilgjengelig fra: 2012-11-05 Laget: 2012-11-01 Sist oppdatert: 2022-06-24bibliografisk kontrollert
4. Initial clustering - A key factor for phase separation kinetics in Fe-Cr-based alloys
Åpne denne publikasjonen i ny fane eller vindu >>Initial clustering - A key factor for phase separation kinetics in Fe-Cr-based alloys
Vise andre…
2014 (engelsk)Inngår i: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 75, s. 62-65Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Clustering of alloying elements in solution-treated Fe-Cr-based alloys is of considerable importance for their microstructure stability upon aging. The clustering of Cr after solution treatment in three stainless steel alloy categories has been studied by atom probe tomography. Furthermore, phase-field simulations are applied to examine the effect of initial clustering on phase separation evolution. It is concluded that the clustering of Cr found in solution-treated ferritic and duplex alloys plays a critical role in the nanostructure evolution during aging.

Emneord
Atom probe tomography (APT), Clustering, Phase separation, Phase-field modeling, Stainless steels
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-142330 (URN)10.1016/j.scriptamat.2013.11.020 (DOI)000331025200016 ()2-s2.0-84892369660 (Scopus ID)
Forskningsfinansiär
Vinnova
Merknad

QC 20140228

Tilgjengelig fra: 2014-02-28 Laget: 2014-02-28 Sist oppdatert: 2024-03-15bibliografisk kontrollert
5. The 475 degrees C embrittlement in Fe-20Cr and Fe-20Cr-X (X=Ni, Cu, Mn) alloys studied by mechanical testing and atom probe tomography
Åpne denne publikasjonen i ny fane eller vindu >>The 475 degrees C embrittlement in Fe-20Cr and Fe-20Cr-X (X=Ni, Cu, Mn) alloys studied by mechanical testing and atom probe tomography
Vise andre…
2013 (engelsk)Inngår i: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 574, s. 123-129Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In the present work the 475 degrees C embrittlement in binary Fe-Cr and ternary Fe-Cr-X (X=Ni, Cu and Mn) alloys have been investigated. The mechanical properties were evaluated using microhardness and impact testing, and the structural evolution was evaluated using atom probe tomography (APT). The APT results after aging at 500 degrees C for 10 h clearly showed that both Ni and Mn accelerate the ferrite decomposition. No evident phase separation of either the Fe-20Cr or Fe-20Cr-1.5Cu samples was detected after 10 h of aging and thus no conclusions on the effect of Cu can be drawn. Cu clustering was however found in the Fe-20Cr-1.5Cu sample after 10 h aging at 500 degrees C. The mechanical property evolution was consistent with the structural evolution found from APT. Samples aged at 450 and 500 degrees C all showed increasing hardness and decreasing impact energy. The embrittlement was observed to take place mainly during the first 10 h of aging and it could primarily be attributed to phase separation, but also substitutional solute clustering and possibly carbon and nitrogen segregation may contribute in a negative way.

Emneord
Phase separation, Spinodal decomposition, 475 degrees C embrittlement, Atom probe tomography, Ferritic stainless steels, Mechanical properties
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-124438 (URN)10.1016/j.msea.2013.03.016 (DOI)000319088100016 ()2-s2.0-84875954170 (Scopus ID)
Forskningsfinansiär
Vinnova
Merknad

QC 20130710

Tilgjengelig fra: 2013-07-10 Laget: 2013-07-05 Sist oppdatert: 2022-06-23bibliografisk kontrollert
6. Direct atom probe tomography observations of concentration fluctuationsin Fe-Cr solid solution
Åpne denne publikasjonen i ny fane eller vindu >>Direct atom probe tomography observations of concentration fluctuationsin Fe-Cr solid solution
Vise andre…
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-150797 (URN)
Merknad

QS 2014

Tilgjengelig fra: 2014-09-10 Laget: 2014-09-10 Sist oppdatert: 2022-09-13bibliografisk kontrollert
7. Effect of homogenization temperatureon subsequent spinodal decompositionduring aging in Fe-46.5Cr alloy
Åpne denne publikasjonen i ny fane eller vindu >>Effect of homogenization temperatureon subsequent spinodal decompositionduring aging in Fe-46.5Cr alloy
Vise andre…
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-150799 (URN)
Merknad

QS 2014

Tilgjengelig fra: 2014-09-10 Laget: 2014-09-10 Sist oppdatert: 2022-06-23bibliografisk kontrollert

Open Access i DiVA

Ph.D thesis_Jing Zhou_KTH(3030 kB)6054 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 3030 kBChecksum SHA-512
7ef7a265d92b96e63285b9dbac8e024c5fb8f270552244f77142a35ed5e7ad75e79aca211e7a5f454a04c3feb2cdb28b74210e0a20a66c6c8902d9dfa03cc88f
Type fulltextMimetype application/pdf

Person

Zhou, Jing

Søk i DiVA

Av forfatter/redaktør
Zhou, Jing
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 6055 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 976 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf