Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning object, grasping and manipulation activities using hierarchical HMMs
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.ORCID-id: 0000-0003-2965-2953
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
Vise andre og tillknytning
2014 (engelsk)Inngår i: Autonomous Robots, ISSN 0929-5593, E-ISSN 1573-7527, Vol. 37, nr 3, 317-331 s.Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This article presents a probabilistic algorithm for representing and learning complex manipulation activities performed by humans in everyday life. The work builds on the multi-level Hierarchical Hidden Markov Model (HHMM) framework which allows decomposition of longer-term complex manipulation activities into layers of abstraction whereby the building blocks can be represented by simpler action modules called action primitives. This way, human task knowledge can be synthesised in a compact, effective representation suitable, for instance, to be subsequently transferred to a robot for imitation. The main contribution is the use of a robust framework capable of dealing with the uncertainty or incomplete data inherent to these activities, and the ability to represent behaviours at multiple levels of abstraction for enhanced task generalisation. Activity data from 3D video sequencing of human manipulation of different objects handled in everyday life is used for evaluation. A comparison with a mixed generative-discriminative hybrid model HHMM/SVM (support vector machine) is also presented to add rigour in highlighting the benefit of the proposed approach against comparable state of the art techniques.

sted, utgiver, år, opplag, sider
2014. Vol. 37, nr 3, 317-331 s.
Emneord [en]
Hierarchical Hidden Markov Model (HHMM), Action primitives, Grasping and manipulation, Human daily activities
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-150901DOI: 10.1007/s10514-014-9392-1ISI: 000340409000006Scopus ID: 2-s2.0-84905755829OAI: oai:DiVA.org:kth-150901DiVA: diva2:746939
Merknad

QC 20140915

Tilgjengelig fra: 2014-09-15 Laget: 2014-09-11 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Kragic, Danica

Søk i DiVA

Av forfatter/redaktør
Kragic, DanicaEk, Carl Henrik
Av organisasjonen
I samme tidsskrift
Autonomous Robots

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 214 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf