Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Wavelets and wavelet based numerical homogenization
KTH, Skolan för datavetenskap och kommunikation (CSC), Numerisk analys, NA (stängd 2012-06-30).ORCID-id: 0000-0002-6321-8619
2009 (engelsk)Inngår i: Multiscale Modeling and Simulation in Science, Springer Berlin/Heidelberg, 2009, s. 195-235Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Wavelets is a tool for describing functions on different scales or level of detail. In mathematical terms, wavelets are functions that form a basis for with special properties; the basis functions are spatially localized and correspond to different scale levels. Finding the representation of a function in this basis amounts to making a multiresolution decomposition of the function. Such a wavelet representation lends itself naturally to analyzing the fine and coarse scales as well as the localization properties of a function.Wavelets have been used in many applications, from image and signal analysis to numerical methods for partial differential equations (PDEs). In this tutorial we first go through the basic wavelet theory and then show a more specific application where wavelets are used for numerical homogenization.We will mostly give references to the original sources of ideas presented. There are also a large number of books and review articles that cover the topic of wavelets, where the interested reader can find further information, e.g. [25, 51, 48, 7, 39, 26, 23], just to mention a few.

sted, utgiver, år, opplag, sider
Springer Berlin/Heidelberg, 2009. s. 195-235
Serie
Lecture Notes in Computational Science and Engineering, ISSN 1439-7358 ; 66
Emneord [en]
Basis functions, Different scale, Different scale levels, Level of details, Localization properties, Multi-resolution decompositions, Numerical homogenizations, Special properties, Wavelet representations, Wavelet theories, Describing functions, Reviews, Signal analysis, Numerical methods
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-152461DOI: 10.1007/978-3-540-88857-4_4Scopus ID: 2-s2.0-78651548355ISBN: 978-3-540-88856-7 (tryckt)OAI: oai:DiVA.org:kth-152461DiVA, id: diva2:750047
Konferanse
Summer School on Multiscale Modeling and Simulation in Science; Stockholm; Sweden
Merknad

QC 20140926

Tilgjengelig fra: 2014-09-26 Laget: 2014-09-26 Sist oppdatert: 2014-09-26bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Runborg, Olof

Søk i DiVA

Av forfatter/redaktør
Runborg, Olof
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 20 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf