Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
KTH-3D-TOTAL: A 3D dataset for discovering spatial structures for long-term autonomous learning
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.ORCID-id: 0000-0003-0448-3786
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
Vise andre og tillknytning
2014 (engelsk)Inngår i: 2014 13th International Conference on Control Automation Robotics and Vision, ICARCV 2014, IEEE , 2014, s. 1528-1535Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Long-term autonomous learning of human environments entails modelling and generalizing over distinct variations in: object instances in different scenes, and different scenes with respect to space and time. It is crucial for the robot to recognize the structure and context in spatial arrangements and exploit these to learn models which capture the essence of these distinct variations. Table-tops posses a typical structure repeatedly seen in human environments and are identified by characteristics of being personal spaces of diverse functionalities and dynamically changing due to human interactions. In this paper, we present a 3D dataset of 20 office table-tops manually observed and scanned 3 times a day as regularly as possible over 19 days (461 scenes) and subsequently, manually annotated with 18 different object classes, including multiple instances. We analyse the dataset to discover spatial structures and patterns in their variations. The dataset can, for example, be used to study the spatial relations between objects and long-term environment models for applications such as activity recognition, context and functionality estimation and anomaly detection.

sted, utgiver, år, opplag, sider
IEEE , 2014. s. 1528-1535
Emneord [en]
Robotics, Activity recognition, Autonomous learning, Environment models, Human interactions, Multiple instances, Spatial arrangements, Spatial structure, Typical structures, Computer vision
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-166173DOI: 10.1109/ICARCV.2014.7064543Scopus ID: 2-s2.0-84927722286ISBN: 9781479951994 (tryckt)OAI: oai:DiVA.org:kth-166173DiVA, id: diva2:809433
Konferanse
2014 13th International Conference on Control Automation Robotics and Vision, ICARCV 2014, Singapore, Singapore, 10 December 2014 through 12 December 2014
Merknad

QC 20150504

Tilgjengelig fra: 2015-05-04 Laget: 2015-05-04 Sist oppdatert: 2015-05-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Folkesson, JohnJensfelt, Patric

Søk i DiVA

Av forfatter/redaktør
Thippur, AkshayaAmbrus, RaresDel Burgo, Adria GallartFolkesson, JohnJensfelt, Patric
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 126 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf