Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A frequency domain linearized Navier-Stokes method including acoustic damping by eddy viscosity using RANS
KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx).
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
2015 (engelsk)Inngår i: Journal of Sound and Vibration, ISSN 0022-460X, E-ISSN 1095-8568, Vol. 346, s. 229-247Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper, a method for including damping of acoustic energy in regions of strong turbulence is derived for a linearized Navier-Stokes method in the frequency domain. The proposed method is validated and analyzed in 2D only, although the formulation is fully presented in 3D. The result is applied in a study of the linear interaction between the acoustic and the hydrodynamic held in a 2D T-junction, subject to grazing flow at Mach 0.1. Part of the acoustic energy at the upstream edge of the junction is shed as harmonically oscillating disturbances, which are conveyed across the shear layer over the junction, where they interact with the acoustic field. As the acoustic waves travel in regions of strong shear, there is a need to include the interaction between the background turbulence and the acoustic field. For this purpose, the oscillation of the background turbulence Reynolds stress, due to the acoustic Field, is modeled using an eddy Newtonian model assumption. The time averaged flow is first solved for using RANS along with a k-epsilon turbulence model. The spatially varying turbulent eddy viscosity is then added to the spatially invariant kinematic viscosity in the acoustic set of equations. The response of the 2D T-junction to an incident acoustic field is analyzed via a plane wave scattering matrix model, and the result is compared to experimental data for a T-junction of rectangular ducts. A strong improvement in the agreement between calculation and experimental data is found when the modification proposed in this paper is implemented. Discrepancies remaining are likely due to inaccuracies in the selected turbulence model, which is known to produce large errors e.g. for flows with significant rotation, which the grazing flow across the T-junction certainly is A natural next step is therefore to test the proposed methodology together with more sophisticated turbulence models.

sted, utgiver, år, opplag, sider
2015. Vol. 346, s. 229-247
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-165184DOI: 10.1016/j.jsv.2015.02.030ISI: 000351950900015Scopus ID: 2-s2.0-84924598879OAI: oai:DiVA.org:kth-165184DiVA, id: diva2:810969
Merknad

QC 20150508

Tilgjengelig fra: 2015-05-08 Laget: 2015-04-24 Sist oppdatert: 2017-12-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Holmberg, AndreasKierkegaard, AxelWeng, Chenyang
Av organisasjonen
I samme tidsskrift
Journal of Sound and Vibration

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 246 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf