Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Proteome- and Transcriptome-Driven Reconstruction of the Human Myocyte Metabolic Network and Its Use for Identification of Markers for Diabetes
Vise andre og tillknytning
2015 (engelsk)Inngår i: Cell reports, ISSN 2211-1247, E-ISSN 2211-1247, Vol. 11, nr 6, s. 921-933Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Skeletal myocytes are metabolically active and susceptible to insulin resistance and are thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes, and their elucidation at the systems level requires genome-wide data and biological networks. Genome-scale metabolic models (GEMs) provide a network context for the integration of high-throughput data. We generated myocyte-specific RNA-sequencing data and investigated their correlation with proteome data. These data were then used to reconstruct a comprehensive myocyte GEM. Next, we performed a meta-analysis of six studies comparing muscle transcription in T2D versus healthy subjects. Transcriptional changes were mapped on the myocyte GEM, revealing extensive transcriptional regulation in T2D, particularly around pyruvate oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism, connected through the downregulated dihydrolipoamide dehydrogenase. Strikingly, the gene signature underlying this metabolic regulation successfully classifies the disease state of individual samples, suggesting that regulation of these pathways is a ubiquitous feature of myocytes in response to T2D.

sted, utgiver, år, opplag, sider
2015. Vol. 11, nr 6, s. 921-933
Emneord [en]
Gene-Set Analysis, Insulin-Resistance, Skeletal-Muscle, Expression Data, Oxidative-Phosphorylation, Amino-Acids, Integration, Obesity, Quantification, Hyperglycemia
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-169267DOI: 10.1016/j.celrep.2015.04.010ISI: 000354406900009PubMedID: 25937284Scopus ID: 2-s2.0-84929276343OAI: oai:DiVA.org:kth-169267DiVA, id: diva2:821457
Forskningsfinansiär
Science for Life Laboratory - a national resource center for high-throughput molecular bioscienceKnut and Alice Wallenberg FoundationNovo Nordisk
Merknad

QC 20150615

Tilgjengelig fra: 2015-06-15 Laget: 2015-06-12 Sist oppdatert: 2020-03-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Uhlén, Mathias

Søk i DiVA

Av forfatter/redaktør
Uhlén, MathiasNielsen, Jens
Av organisasjonen
I samme tidsskrift
Cell reports

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 65 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf