Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Highly Efficient Bioinspired Molecular Ru Water Oxidation Catalysts with Negatively Charged Backbone Ligands
KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.ORCID-id: 0000-0003-1662-5817
KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.ORCID-id: 0000-0003-3455-0855
Vise andre og tillknytning
2015 (engelsk)Inngår i: Accounts of Chemical Research, ISSN 0001-4842, E-ISSN 1520-4898, Vol. 48, nr 7, s. 2084-2096Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven-coordinate Ru-IV species was isolated as a reaction intermediate, shedding light on the reaction mechanisms of Ru-catalyzed water oxidation chemistry. Auxiliary ligands have dramatic effects on the water oxidation catalysis in terms of the reactivity and the reaction mechanism. For instance, Ru-bda (H(2)bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts catalyze Ce-IV-driven water oxidation extremely fast via the radical coupling of two Ru-V=O species, while Ru-pda (H(2)pda = 1,10-phenanthroline-2,9-dicarboxylic acid) water oxidation catalysts catalyze the same reaction slowly via water nucleophilic attack on a Ru-V-O species. With a number of active Ru catalysts in hands, light driven water oxidation was accomplished using catalysts with low catalytic onset potentials. The structures of molecular catalysts could be readily tailored to introduce additional functional groups, which favors the fabrication of state-of-the-art Ru-based water oxidation devices, such as electrochemical water oxidation anodes and photo-electrochemical anodes. The development of efficient water oxidation catalysts has led to a step forward in the sustainable energy system.

sted, utgiver, år, opplag, sider
2015. Vol. 48, nr 7, s. 2084-2096
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-172721DOI: 10.1021/acs.accounts.5b00149ISI: 000358556400032PubMedID: 26131964Scopus ID: 2-s2.0-84937690571OAI: oai:DiVA.org:kth-172721DiVA, id: diva2:849353
Forskningsfinansiär
Swedish Research CouncilSwedish Energy AgencyKnut and Alice Wallenberg Foundation
Merknad

QC 20150828

Tilgjengelig fra: 2015-08-28 Laget: 2015-08-27 Sist oppdatert: 2017-12-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Duan, LeleLi, FushengSun, Licheng

Søk i DiVA

Av forfatter/redaktør
Duan, LeleWang, LeiLi, FushengSun, Licheng
Av organisasjonen
I samme tidsskrift
Accounts of Chemical Research

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 54 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf