Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Regression models for analyzing radiological visual grading studies - an empirical comparison
KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinsk bildbehandling och visualisering. Linköping University, Sweden. (BILDBEHANDL OCH VISUALISERING)ORCID-id: 0000-0002-7750-1917
2015 (engelsk)Inngår i: BMC Medical Imaging, ISSN 1471-2342, E-ISSN 1471-2342, Vol. 15, artikkel-id 49Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Background: For optimizing and evaluating image quality in medical imaging, one can use visual grading experiments, where observers rate some aspect of image quality on an ordinal scale. To analyze the grading data, several regression methods are available, and this study aimed at empirically comparing such techniques, in particular when including random effects in the models, which is appropriate for observers and patients. Methods: Data were taken from a previous study where 6 observers graded or ranked in 40 patients the image quality of four imaging protocols, differing in radiation dose and image reconstruction method. The models tested included linear regression, the proportional odds model for ordinal logistic regression, the partial proportional odds model, the stereotype logistic regression model and rank-order logistic regression (for ranking data). In the first two models, random effects as well as fixed effects could be included; in the remaining three, only fixed effects. Results: In general, the goodness of fit (AIC and McFadden's Pseudo R-2) showed small differences between the models with fixed effects only. For the mixed-effects models, higher AIC and lower Pseudo R-2 was obtained, which may be related to the different number of parameters in these models. The estimated potential for dose reduction by new image reconstruction methods varied only slightly between models. Conclusions: The authors suggest that the most suitable approach may be to use ordinal logistic regression, which can handle ordinal data and random effects appropriately.

sted, utgiver, år, opplag, sider
BioMed Central, 2015. Vol. 15, artikkel-id 49
Emneord [en]
Image quality, Visual grading, Ordinal data, Regression models, Fixed effects, Random effects
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-177951DOI: 10.1186/s12880-015-0083-yISI: 000363921400001PubMedID: 26515510Scopus ID: 2-s2.0-84945565694OAI: oai:DiVA.org:kth-177951DiVA, id: diva2:876364
Merknad

QC 20151203. QC 20160113

Tilgjengelig fra: 2015-12-03 Laget: 2015-11-30 Sist oppdatert: 2017-12-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Smedby, Örjan

Søk i DiVA

Av forfatter/redaktør
Smedby, Örjan
Av organisasjonen
I samme tidsskrift
BMC Medical Imaging

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 152 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf