Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
CT scan range estimation using multiple body parts detection: let PACS learn the CT image content
KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinsk bildteknik. Linköping University, Sweden; Sectra AB, Sweden.ORCID-id: 0000-0002-0442-3524
2016 (engelsk)Inngår i: International Journal of Computer Assisted Radiology and Surgery, ISSN 1861-6410, E-ISSN 1861-6429, Vol. 11, nr 2, s. 317-325Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Purpose: The aim of this study was to develop an efficient CT scan range estimation method that is based on the analysis of image data itself instead of metadata analysis. This makes it possible to quantitatively compare the scan range of two studies. Methods: In our study, 3D stacks are first projected to 2D coronal images via a ray casting-like process. Trained 2D body part classifiers are then used to recognize different body parts in the projected image. The detected candidate regions go into a structure grouping process to eliminate false-positive detections. Finally, the scale and position of the patient relative to the projected figure are estimated based on the detected body parts via a structural voting. The start and end lines of the CT scan are projected to a standard human figure. The position readout is normalized so that the bottom of the feet represents 0.0, and the top of the head is 1.0. Results: Classifiers for 18 body parts were trained using 184 CT scans. The final application was tested on 136 randomly selected heterogeneous CT scans. Ground truth was generated by asking two human observers to mark the start and end positions of each scan on the standard human figure. When compared with the human observers, the mean absolute error of the proposed method is 1.2 % (max: 3.5 %) and 1.6 % (max: 5.4 %) for the start and end positions, respectively. Conclusion: We proposed a scan range estimation method using multiple body parts detection and relative structure position analysis. In our preliminary tests, the proposed method delivered promising results.

sted, utgiver, år, opplag, sider
Springer, 2016. Vol. 11, nr 2, s. 317-325
Emneord [en]
Body parts detection, Image classification, Machine learning, Pictorial structures, Scan range estimation, Structural voting
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-175028DOI: 10.1007/s11548-015-1232-zISI: 000370160300015Scopus ID: 2-s2.0-84957960866OAI: oai:DiVA.org:kth-175028DiVA, id: diva2:876706
Merknad

QC 20151204. QC 20160319

Tilgjengelig fra: 2015-12-04 Laget: 2015-10-09 Sist oppdatert: 2017-12-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Wang, Chunliang

Søk i DiVA

Av forfatter/redaktør
Wang, Chunliang
Av organisasjonen
I samme tidsskrift
International Journal of Computer Assisted Radiology and Surgery

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 52 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf