Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Auto-Scoring of Personalised News in the Real-Time Web: Challenges, Overview and Evaluation of the State-of-the-Art Solutions
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS.ORCID-id: 0000-0002-9351-8508
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS.
2015 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The problem of automated personalised news recommendation, often referred as auto-scoring has attracted substantial research throughout the last decade in multiple domains such as data mining and machine learning, computer systems, e commerce and sociology. A typical "recommender systems" approach to solving this problem usually adopts content-based scoring, collaborative filtering or more often a hybrid approach. Due to their special nature, news articles introduce further challenges and constraints to conventional item recommendation problems, characterised by short lifetime and rapid popularity trends. In this survey, we provide an overview of the challenges and current solutions in news personalisation and ranking from both an algorithmic and system design perspective, and present our evaluation of the most representative scoring algorithms while also exploring the benefits of using a hybrid approach. Our evaluation is based on a real-life case study in news recommendations.

sted, utgiver, år, opplag, sider
IEEE Computer Society, 2015. s. 169-180
Emneord [en]
Internet, collaborative filtering, recommender systems, auto-scoring, automated personalised news recommendation, collaborative filtering, content-based scoring, hybrid approach, item recommendation problems, news personalisation, real-time Web, recommender systems approach, Algorithm design and analysis, Collaboration, Correlation, Market research, Measurement, Recommender systems, auto-scoring, data mining, machine learning, recommender systems, scoring algorithms
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
URN: urn:nbn:se:kth:diva-179469DOI: 10.1109/ICCAC.2015.9ISI: 000380476500016Scopus ID: 2-s2.0-84962109478OAI: oai:DiVA.org:kth-179469DiVA, id: diva2:883354
Konferanse
Cloud and Autonomic Computing (ICCAC), 2015 International Conference on, Cambridge, MA, USA, September 21-25, 2015
Merknad

QC 20160121

Tilgjengelig fra: 2015-12-17 Laget: 2015-12-17 Sist oppdatert: 2016-09-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Carbone, Paris

Søk i DiVA

Av forfatter/redaktør
Carbone, ParisVlassov, Vladimir
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 63 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf