Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A security framework for population-scale genomics analysis
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST).
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS.ORCID-id: 0000-0002-9484-6714
KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Parallelldatorcentrum, PDC. KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST).ORCID-id: 0000-0002-9901-9857
2015 (engelsk)Inngår i: Proceedings of the 2015 International Conference on High Performance Computing and Simulation, HPCS 2015, IEEE conference proceedings, 2015, s. 106-114Konferansepaper, Publicerat paper (Fagfellevurdert)
Resurstyp
Text
Abstract [en]

Biobanks store genomic material from identifiable individuals. Recently many population-based studies have started sequencing genomic data from biobank samples and cross-linking the genomic data with clinical data, with the goal of discovering new insights into disease and clinical treatments. However, the use of genomic data for research has far-reaching implications for privacy and the relations between individuals and society. In some jurisdictions, primarily in Europe, new laws are being or have been introduced to legislate for the protection of sensitive data relating to individuals, and biobank-specific laws have even been designed to legislate for the handling of genomic data and the clear definition of roles and responsibilities for the owners and processors of genomic data. This paper considers the security questions raised by these developments. We introduce a new threat model that enables the design of cloud-based systems for handling genomic data according to privacy legislation. We also describe the design and implementation of a security framework using our threat model for BiobankCloud, a platform that supports the secure storage and processing of genomic data in cloud computing environments.

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2015. s. 106-114
Emneord [en]
Access Control, Cloud Computing, Genomics, Privacy, Security, Data privacy, Digital storage, Genes, Population statistics, Clinical treatments, Cloud computing environments, Design and implementations, Genomics analysis, Privacy legislation, Security frameworks, Data handling
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-181631DOI: 10.1109/HPCSim.2015.7237028ISI: 000375684100014Scopus ID: 2-s2.0-84948424681ISBN: 9781467378123 (tryckt)OAI: oai:DiVA.org:kth-181631DiVA, id: diva2:907568
Konferanse
13th International Conference on High Performance Computing and Simulation, HPCS 2015, 20 July 2015 through 24 July 2015
Merknad

QC 20160229

Tilgjengelig fra: 2016-02-29 Laget: 2016-02-02 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Gholami, AliDowling, JimLaure, Erwin
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 51 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf