Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Structural transitions in ceramide cubic phases during formation of the human skin barrier
KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Teoretisk biologisk fysik.ORCID-id: 0000-0002-4591-9809
KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Teoretisk biologisk fysik.
Vise andre og tillknytning
2018 (engelsk)Inngår i: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086Artikkel i tidsskrift (Annet vitenskapelig) Published
Abstract [en]

The stratum corneum is the outer-most layer of the human skin, and constitutes the primary barrier to penetration of external substances. The barrier function of the stratum corneum is primarily located to its extracellular space, which consists of long-chain ceramides, free fatty acids and cholesterol organised into a stacked lamellar bilayer structure. Recent experimental studies have shown that these lamellar structures are formed through a structural reorganization of glycosylceramide-based bilayers, folded in three dimensions with a cubic-like symmetry. Here we present coarse-grained molecular dynamics simulations of human ceramide- and glycosylceramide bilayer structures with gyroid cubic symmetry. The bilayer structures with glycosylceramides are able to maintain the cubic symmetry, while the bilayer structures with ceramides collapse into a stacked lamellar bilayer structure as the water content is reduced.

sted, utgiver, år, opplag, sider
Cell Press , 2018.
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-183361DOI: 10.1016/j.bpj.2017.12.039ISI: 000428017500015Scopus ID: 2-s2.0-85043528920OAI: oai:DiVA.org:kth-183361DiVA, id: diva2:910000
Merknad

QC 20180427

Tilgjengelig fra: 2016-03-08 Laget: 2016-03-08 Sist oppdatert: 2018-04-27bibliografisk kontrollert
Inngår i avhandling
1. Computational modeling of biological barriers
Åpne denne publikasjonen i ny fane eller vindu >>Computational modeling of biological barriers
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

One of the most important aspects for all life on this planet is the act to keep their biological processes in a state where they do not reach equilibrium. One part in the upholding of this imbalanced state is the barrier between the cells and their surroundings, created by the cell membrane. Additionally, terrestrial animal life often requires a barrier that protects the organism's body from external hazards and water loss. As an alternative to experiments, the investigation of the processes occurring at these barriers can be performed by using molecular dynamics simulations. Through this method we can obtain an atomistic description of the dynamics associated with events that are not accessible to experimental setups.

 In this thesis the first paper presents an improved particle-mesh Ewald method for the calculation of long-range Lennard-Jones interactions in molecular dynamics simulations, which solves the historical performance problem of the method. The second paper demonstrate an improved implementation, with a higher accuracy, that only incurs a performance loss of roughly 15% compared to conventional simulations using the Gromacs simulation package. Furthermore, the third paper presents a study of cholesterol's effect on the permeation of six different solutes across a variety of lipid bilayers. A laterally inhomogeneous permeability in cholesterol-containing membranes is proposed as an explanation for the large differences between experimental permeabilities and calculated partition coefficients in simulations. The fourth paper contains a coarse-grained simulation study of a proposed structural transformation in ceramide bilayer structures, during the formation of the stratum corneum. The simulations show that glycosylceramides are able to stabilize a three-dimensionally folded bilayer structure, while simulations with ceramides collapse into a lamellar bilayer structure.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2016. s. xii, 49
Serie
TRITA-FYS, ISSN 0280-316X ; 2016:10
Emneord
Molecular dynamics, cholesterol, lipid bilayer, permeability, long-range interactions, Lennard-Jones, dispersion, particle-mesh Ewald, stratum corneum, skin formation
HSV kategori
Forskningsprogram
Biologisk fysik
Identifikatorer
urn:nbn:se:kth:diva-183362 (URN)978-91-7595-884-2 (ISBN)
Disputas
2016-04-15, sal F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad

QC 20160308

Tilgjengelig fra: 2016-03-08 Laget: 2016-03-08 Sist oppdatert: 2016-03-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Wennberg, ChristianLindahl, Erik

Søk i DiVA

Av forfatter/redaktør
Wennberg, ChristianLundborg, MagnusLindahl, Erik
Av organisasjonen
I samme tidsskrift
Biophysical Journal

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 318 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf