Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessing Antidepressants Using Intelligent Data Monitoring and Mining of Online Fora
KTH, Skolan för teknik och hälsa (STH), Hälso- och systemvetenskap, Systemsäkerhet och organisation.
KTH, Skolan för teknik och hälsa (STH), Hälso- och systemvetenskap, Systemsäkerhet och organisation.ORCID-id: 0000-0002-1929-135X
2016 (engelsk)Inngår i: IEEE journal of biomedical and health informatics, ISSN 2168-2194, E-ISSN 2168-2208, Vol. 20, nr 4, s. 977-986Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Depression is a global health concern. Social networks allow the affected population to share their experiences. These experiences, when mined, extracted, and analyzed, can be converted into either warnings to recall drugs (dangerous side effects), or service improvement (interventions, treatment options) based on observations derived from user behavior in depression-related social networks. Our aim was to develop a weighted network model to represent user activity on social health networks. This enabled us to accurately represent user interactions by relying on the data's semantic content. Our three-step method uses the weighted network model to represent user's activity, and network clustering and module analysis to characterize user interactions and extract further knowledge from user's posts. The network's topological properties reflect user activity such as posts' general topic as well as timing, while weighted edges reflect the posts semantic content and similarities among posts. The result, a synthesis from word data frequency, statistical analysis of module content, and the modeled health network's properties, has allowed us to gain insight into consumer sentiment of antidepressants. This approach will allow all parties to participate in improving future health solutions of patients suffering from depression.

sted, utgiver, år, opplag, sider
IEEE , 2016. Vol. 20, nr 4, s. 977-986
Emneord [en]
Data mining, depression, network analysis, online fora, semantic analysis, social media, user sentiment
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-190560DOI: 10.1109/JBHI.2016.2539972ISI: 000380128300002PubMedID: 27164611Scopus ID: 2-s2.0-84978285828OAI: oai:DiVA.org:kth-190560DiVA, id: diva2:952580
Merknad

QC 20160815

Tilgjengelig fra: 2016-08-15 Laget: 2016-08-12 Sist oppdatert: 2018-01-10bibliografisk kontrollert
Inngår i avhandling
1. A Novel Method to Intelligently Mine Social Media to Assess Consumer Sentiment of Pharmaceutical Drugs
Åpne denne publikasjonen i ny fane eller vindu >>A Novel Method to Intelligently Mine Social Media to Assess Consumer Sentiment of Pharmaceutical Drugs
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis focuses on the development of novel data mining techniques that convert user interactions in social media networks into readable data that would benefit users, companies, and governments. The readable data can either warn of dangerous side effects of pharmaceutical drugs or improve intervention strategies. A weighted model enabled us to represent user activity in the network, that allowed us to reflect user sentiment of a pharmaceutical drug and/or service. The result is an accurate representation of user sentiment. This approach, when modified for specific diseases, drugs, and services, can enable rapid user feedback that can be converted into rapid responses from consumers to industry and government to withdraw possibly dangerous drugs and services from the market or improve said drugs and services.

Our approach monitors social media networks in real-time, enabling government and industry to rapidly respond to consumer sentiment of pharmaceutical drugs and services.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2017. s. 34
Emneord
Data Mining
HSV kategori
Forskningsprogram
Medicinsk teknologi
Identifikatorer
urn:nbn:se:kth:diva-203119 (URN)978-91-7729-295-1 (ISBN)
Disputas
2017-03-22, Hälsovägen 11C, Huddinge, 10:00 (engelsk)
Veileder
Merknad

QC 20170314

Tilgjengelig fra: 2017-03-14 Laget: 2017-03-11 Sist oppdatert: 2017-03-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Søk i DiVA

Av forfatter/redaktør
Akay, AltugErlandsson, Björn-Erik
Av organisasjonen
I samme tidsskrift
IEEE journal of biomedical and health informatics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 877 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf