Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sparse Kernel Reduced-Rank Regression for Bimodal Emotion Recognition From Facial Expression and Speech
Vise andre og tillknytning
2016 (engelsk)Inngår i: IEEE transactions on multimedia, ISSN 1520-9210, E-ISSN 1941-0077, Vol. 18, nr 7, s. 1319-1329Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

A novel bimodal emotion recognition approach from facial expression and speech based on the sparse kernel reduced-rank regression (SKRRR) fusion method is proposed in this paper. In this method, we use the openSMILE feature extractor and the scale invariant feature transform feature descriptor to respectively extract effective features from speech modality and facial expression modality, and then propose the SKRRR fusion approach to fuse the emotion features of two modalities. The proposed SKRRR method is a nonlinear extension of the traditional reduced-rank regression (RRR), where both predictor and response feature vectors in RRR are kernelized by being mapped onto two high-dimensional feature space via two nonlinear mappings, respectively. To solve the SKRRR problem, we propose a sparse representation (SR)-based approach to find the optimal solution of the coefficient matrices of SKRRR, where the introduction of the SR technique aims to fully consider the different contributions of training data samples to the derivation of optimal solution of SKRRR. Finally, we utilize the eNTERFACE '05 and AFEW4.0 bimodal emotion database to conduct the experiments of monomodal emotion recognition and bimodal emotion recognition, and the results indicate that our presented approach acquires the highest or comparable bimodal emotion recognition rate among some state-of-the-art approaches.

sted, utgiver, år, opplag, sider
2016. Vol. 18, nr 7, s. 1319-1329
Emneord [en]
Bimodal emotion recognition, facial expression, feature fusion, sparse kernel reduced-rank regression (SKRRR), speech
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-190497DOI: 10.1109/TMM.2016.2557721ISI: 000379752600008Scopus ID: 2-s2.0-84976556360OAI: oai:DiVA.org:kth-190497DiVA, id: diva2:954041
Merknad

QC 20160819

Tilgjengelig fra: 2016-08-19 Laget: 2016-08-12 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Li, Haibo
Av organisasjonen
I samme tidsskrift
IEEE transactions on multimedia

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 239 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf