Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using a Biomechanical Model and Articulatory Data for the Numerical Production of Vowels
KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH.ORCID-id: 0000-0002-8991-1016
GTM Grup de recerca en Tecnologies Mèdia, La Salle, Universitat Ramon Llull, Barcelona, Spain.
KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH.ORCID-id: 0000-0003-4532-014X
GTM Grup de recerca en Tecnologies Mèdia, La Salle, Universitat Ramon Llull, Barcelona, Spain.
Vise andre og tillknytning
2016 (engelsk)Inngår i: Interspeech 2016, 2016, s. 3569-3573Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We introduce a framework to study speech production using a biomechanical model of the human vocal tract, ArtiSynth. Electromagnetic articulography data was used as input to an inverse tracking simulation that estimates muscle activations to generate 3D jaw and tongue postures corresponding to the target articulator positions. For acoustic simulations, the vocal tract geometry is needed, but since the vocal tract is a cavity rather than a physical object, its geometry does not explicitly exist in a biomechanical model. A fully-automatic method to extract the 3D geometry (surface mesh) of the vocal tract by blending geometries of the relevant articulators has therefore been developed. This automatic extraction procedure is essential, since a method with manual intervention is not feasible for large numbers of simulations or for generation of dynamic sounds, such as diphthongs. We then simulated the vocal tract acoustics by using the Finite Element Method (FEM). This requires a high quality vocal tract mesh without irregular geometry or self-intersections. We demonstrate that the framework is applicable to acoustic FEM simulations of a wide range of vocal tract deformations. In particular we present results for cardinal vowel production, with muscle activations, vocal tract geometry, and acoustic simulations.

sted, utgiver, år, opplag, sider
2016. s. 3569-3573
Emneord [en]
speech production, biomechanical articulatory model, vocal tract geometry, vocal tract acoustics, Finite Element Method
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-192602DOI: 10.21437/Interspeech.2016-1500ISI: 000409394402095Scopus ID: 2-s2.0-84994364959OAI: oai:DiVA.org:kth-192602DiVA, id: diva2:971288
Konferanse
Interspeech, 8-12 Sep 2016, San Francisco
Prosjekter
EUNISON
Merknad

QC 20160920

Tilgjengelig fra: 2016-09-15 Laget: 2016-09-15 Sist oppdatert: 2018-11-16bibliografisk kontrollert
Inngår i avhandling
1. Computational Modeling of the Vocal Tract: Applications to Speech Production
Åpne denne publikasjonen i ny fane eller vindu >>Computational Modeling of the Vocal Tract: Applications to Speech Production
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Human speech production is a complex process, involving neuromuscular control signals, the effects of articulators' biomechanical properties and acoustic wave propagation in a vocal tract tube of intricate shape. Modeling these phenomena may play an important role in advancing our understanding of the involved mechanisms, and may also have future medical applications, e.g., guiding doctors in diagnosing, treatment planning, and surgery prediction of related disorders, ranging from oral cancer, cleft palate, obstructive sleep apnea, dysphagia, etc.

A more complete understanding requires models that are as truthful representations as possible of the phenomena. Due to the complexity of such modeling, simplifications have nevertheless been used extensively in speech production research: phonetic descriptors (such as the position and degree of the most constricted part of the vocal tract) are used as control signals, the articulators are represented as two-dimensional geometrical models, the vocal tract is considered as a smooth tube and plane wave propagation is assumed, etc.

This thesis aims at firstly investigating the consequences of such simplifications, and secondly at contributing to establishing unified modeling of the speech production process, by connecting three-dimensional biomechanical modeling of the upper airway with three-dimensional acoustic simulations. The investigation on simplifying assumptions demonstrated the influence of vocal tract geometry features — such as shape representation, bending and lip shape — on its acoustic characteristics, and that the type of modeling — geometrical or biomechanical — affects the spatial trajectories of the articulators, as well as the transition of formant frequencies in the spectrogram.

The unification of biomechanical and acoustic modeling in three-dimensions allows to realistically control the acoustic output of dynamic sounds, such as vowel-vowel utterances, by contraction of relevant muscles. This moves and shapes the speech articulators that in turn dene the vocal tract tube in which the wave propagation occurs. The main contribution of the thesis in this line of work is a novel and complex method that automatically reconstructs the shape of the vocal tract from the biomechanical model. This step is essential to link biomechanical and acoustic simulations, since the vocal tract, which anatomically is a cavity enclosed by different structures, is only implicitly defined in a biomechanical model constituted of several distinct articulators.

sted, utgiver, år, opplag, sider
KTH Royal Institute of Technology, 2018. s. 105
Serie
TRITA-EECS-AVL ; 2018:90
Emneord
vocal tract, upper airway, speech production, biomechanical model, acoustic model, vocal tract reconstruction
HSV kategori
Forskningsprogram
Tal- och musikkommunikation
Identifikatorer
urn:nbn:se:kth:diva-239071 (URN)978-91-7873-021-6 (ISBN)
Disputas
2018-12-07, D2, Lindstedtsvägen 5, Stockholm, 14:00 (engelsk)
Opponent
Veileder
Merknad

QC 20181116

Tilgjengelig fra: 2018-11-16 Laget: 2018-11-16 Sist oppdatert: 2018-11-16bibliografisk kontrollert

Open Access i DiVA

fulltext(1412 kB)187 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1412 kBChecksum SHA-512
264ed7ef651a6641f049f5c269da281efa5d0f293a9c90bcded964ab9946d5944f43e5874a523e7da2188c78417563fc7dd4b0fa96cfb017b2e9d96645f5f53a
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopusPublished version

Personposter BETA

Dabbaghchian, Saeed

Søk i DiVA

Av forfatter/redaktør
Dabbaghchian, SaeedEngwall, Olov
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 187 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 247 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf