Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Investigation of loading orientation effect on dynamic deformation of single crystal copper at high strain rates: Discrete dislocation dynamics study
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Materialteknologi.ORCID-id: 0000-0001-5059-1791
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Materialteknologi.ORCID-id: 0000-0002-9920-5393
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Materialteknologi.ORCID-id: 0000-0002-8494-3983
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Uniaxial tensile loading of copper single crystal along [001] and [111] orientations is modeled at two high strain rates of 105 and 106 s-1. Discrete dislocation dynamics method is used to study the anisotropic characteristic of plastic deformation in the model crystal. Furthermore, strain rate sensitivity of the flow stress in copper crystal is examined. Investigation of mechanical response of single crystal to the external loading demonstrates a substantial effect of loading orientation on the plastic flow. We find that at both imposed strain rates flow stress increases significantly when tensile load is applied along [111] crystallographic axis. Similarly, plastic anisotropy is observed in dislocation density evolution such that more dislocations are generated as straining direction of single crystal is changed from [001] to [111] axis. Moreover, plastic flow behavior exhibits a profound strain rate sensitivity at both loading orientations which agrees well with experimental observations regarding strain rate dependency of flow stress in copper single crystal as strain rate exceeds 103 s-1. At both applied strain rates dislocations evolve into a heterogeneous microstructure and highest heterogeneity is observed as model crystal is loaded along [111] direction at strain rate of    106 s-1. Formation of slip bands and consequently localization of plastic deformation are detected for all considered cases. However, at the higher strain rate of 106 s-1, slip band formation is more pronounced for both loading orientations.

Nyckelord [en]
Discrete dislocation dynamics, Crystal plasticity, Plastic anisotropy, Cu single crystal, High strain rate deformation, Slip band formation
Nationell ämneskategori
Materialteknik Metallurgi och metalliska material
Forskningsämne
Teknisk materialvetenskap
Identifikatorer
URN: urn:nbn:se:kth:diva-175414OAI: oai:DiVA.org:kth-175414DiVA, id: diva2:860850
Anmärkning

QS 2015

Tillgänglig från: 2015-10-14 Skapad: 2015-10-14 Senast uppdaterad: 2015-10-14Bibliografiskt granskad
Ingår i avhandling
1. Numerical Modeling of Plasticity in FCC Crystalline Materials Using Discrete Dislocation Dynamics
Öppna denna publikation i ny flik eller fönster >>Numerical Modeling of Plasticity in FCC Crystalline Materials Using Discrete Dislocation Dynamics
2015 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Plasticity in crystalline solids is controlled by the microscopic line defects known as “dislocations”. Decisive role of dislocations in crystal plasticity in addition to fundamentals of plastic deformation are presented in the current thesis work. Moreover, major features of numerical modeling method “Discrete Dislocation Dynamics (DDD)” technique are described to elucidate a powerful computational method used in simulation of crystal plasticity.

First part of the work is focused on the investigation of strain rate effect on the dynamic deformation of crystalline solids. Single crystal copper is chosen as a model crystal and discrete dislocation dynamics method is used to perform numerical uniaxial tensile test on the single crystal at various high strain rates. Twenty four straight dislocations of mixed character are randomly distributed inside a model crystal with an edge length of 1 µm subjected to periodic boundary conditions. Loading of the model crystal with the considered initial dislocation microstructure at constant strain rates ranging from 103 to 105s1 leads to a significant strain rate sensitivity of the plastic flow. In addition to the flow stress, microstructure evolution of the sample crystal demonstrates a considerable strain rate dependency. Furthermore, strain rate affects the strain induce microstructure heterogeneity such that more heterogeneous microstructure emerges as strain rate increases.

Anisotropic characteristic of plasticity in single crystals is investigated in the second part of the study. Copper single crystal is selected to perform numerical tensile tests on the model crystal along two different loading directions of [001] and [111] at two high strain rates. Effect of loading orientation on the macroscopic behavior along with microstructure evolution of the model crystal is examined using DDD method. Investigation of dynamic response of single crystal to the mechanical loading demonstrates a substantial effect of loading orientation on the flow stress. Furthermore, plastic anisotropy is observed in dislocation density evolution such that more dislocations are generated as straining direction of single crystal is changed from [001] to [111] axis. Likewise, strain induced microstructure heterogeneity displays the effect of loading direction such that more heterogeneous microstructure evolve as single crystal is loaded along [111] direction. Formation of slip bands and consequently localization of plastic deformation are detected as model crystal is loaded along both directions.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2015. s. x, 50
Nyckelord
Dislocations, crystal plasticity, discrete dislocation dynamics, Cu single crystal, high strain rate deformation, strain rate sensitivity, plastic anisotropy, slip band formation
Nationell ämneskategori
Teknik och teknologier Materialteknik Metallurgi och metalliska material
Forskningsämne
Teknisk materialvetenskap
Identifikatorer
urn:nbn:se:kth:diva-175424 (URN)978-91-7595-705-0 (ISBN)
Presentation
2015-10-22, Sal Kuben N111, Brinellvägen 23, Materialvetenskap, KTH, Stockholm, 15:30 (Engelska)
Opponent
Handledare
Anmärkning

QC 20151015

Tillgänglig från: 2015-10-14 Skapad: 2015-10-14 Senast uppdaterad: 2015-10-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Korzhavyi, PavelSandström, Rolf

Sök vidare i DiVA

Av författaren/redaktören
Hosseinzadeh Delandar, ArashKorzhavyi, PavelSandström, Rolf
Av organisationen
Materialteknologi
MaterialteknikMetallurgi och metalliska material

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 281 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf