Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Levoglucosan Formation Mechanism during Cellulose Pyrolysis
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Energi- och ugnsteknik.
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Energi- och ugnsteknik.ORCID-id: 0000-0002-1837-5439
(Engelska)Artikel i tidskrift (Övrigt vetenskapligt) Submitted
Nationell ämneskategori
Energiteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-120080OAI: oai:DiVA.org:kth-120080DiVA, id: diva2:613341
Anmärkning

QS 2013

Tillgänglig från: 2013-03-27 Skapad: 2013-03-27 Senast uppdaterad: 2013-03-27Bibliografiskt granskad
Ingår i avhandling
1. Micro-reaction Mechanism Study of the Biomass Thermal Conversion Process using Density Functional Theory
Öppna denna publikation i ny flik eller fönster >>Micro-reaction Mechanism Study of the Biomass Thermal Conversion Process using Density Functional Theory
2013 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Biomass, or bio-energy, is one of the most important alternative energies because of environmental concerns and the future shortage of fossil fuels. Multi-scaled bioenergy studies have been performed in the division of Energy and Furnace Technology, which included studies of macroscopic systems such as systems and reactors, modeling of computational fluid dynamics (CFD), and atomic/molecular level studies. The present thesis focus on the atomic/molecular level that based on quantum chemistry methods.

The microscopic structure study of biomass is the first and an important step for the investigation of the biomass thermal conversion mechanism. Cellulose, hemicellulose, and lignin are the three most important components for biomass. The atomic interactions among these three main components were studied, including the hydrogen bond linkages between cellulose and hemicellulose, and the covalent bond linkages between hemicellulose and lignin.

The decomposition of biomass is complicated and includes cellulose decomposition, hemicellulose decomposition, and lignin decomposition. As the main component of biomass, the mechanism of cellulose pyrolysis mechanism was focused on in this thesis. The study of this mechanism included an investigation of the pathways from cellulose to levoglucosan then to lower-molecular-weight species. Three different pathways were studied for the formation of levoglucosan from cellulose, and three different pathways were studied for the levoglucosan decomposition. The thermal properties for every reactant, intermediate, and product were obtained. The kinetics parameters (rate constant, pre-exponential factor, and activation energy) for every elementary step and pathway were calculated. For the formation of levoglucosan, the levoglucosan chain-end mechanism is the favored pathway due to the lower energy barrier; for the subsequent levoglucosan decomposition process, dehydration is a preferred first step and C-C bond scission is the most difficult pathway due to the strength of the C-C bonds.

The biomass gasification process includes pyrolysis, char gasification, and a gas-phase reaction; Char gasification is considered to be the rate-controlling step because of its slower reaction rate. Char steam gasification can be described as the adsorption of steam on the char surface to form a surface complex, which may transfer to another surface complex, which then desorbs to give the gaseous products (CO and H2) and the solid product of the remaining char. The influences of several radicals (O, H, and OH) and molecules (H2 and O2) on steam adsorption were investigated. It was concluded that the reactivity order for these particles adsorbed onto both zigzag and armchair surfaces is O > H2 > H > OH > O2. For water adsorbs on both zigzag and armchair carbon surfaces, O and OH radicals accelerate water adsorption, but H, O2, and H2 have no significant influence on water adsorption.

It was also shown that quantum chemistry (also known as molecular modeling) can be used to investigate the reaction mechanism of a macroscopic system. Detailed atomic/molecular descriptions can provide further understanding of the reaction process and possible products.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2013. s. x, 58
Nyckelord
biomass thermal conversion, cellulose pyrolysis, char steam gasification, adsorption, interaction, mechanism, quantum chemistry, density functional theory
Nationell ämneskategori
Bioenergi
Identifikatorer
urn:nbn:se:kth:diva-120071 (URN)978-91-7501-656-6 (ISBN)
Disputation
2013-04-22, Sal F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20130327

Tillgänglig från: 2013-03-27 Skapad: 2013-03-27 Senast uppdaterad: 2013-03-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Yang, Weihong

Sök vidare i DiVA

Av författaren/redaktören
Zhang, XiaoleiYang, Weihong
Av organisationen
Energi- och ugnsteknik
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 79 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf