Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Filtering extracting features from infrasound data
KTH, Skolan för teknikvetenskap (SCI), Fysik.
2006 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The goal of the research presented in this thesis is to extract features, to filter and get fingerprints from signals detected by infrasound, seismic and magnetic sensors. If this can be achieved in a real time system, then signals from various events can be detected and identified in an otherwise torrent data.

Several approaches have been analyzed. Wavelet transform methods are used together with ampligram and time scale spectrum to analyze infrasound, seismic and magnetic data. The energy distribution in the frequency domain may be seen in wavelet scalograms. A scalogram displays the wavelet coefficients as a function of the time scale and of the elapsed time. The ampligram is a useful method of presentation of the physical properties of the time series. The ampligram demonstrate the amplitude and phase of components of the signal corresponding to different spectral densities. The ampligram may be considered as an analogy to signal decomposition into Fourier components. In that case different components correspond to different frequencies. In the present case different components correspond to different wavelet coefficient magnitudes, being equivalent to spectral densities. The time scale spectrum is a forward wavelet transform of each row (wavelet coefficient magnitude) in the ampligram. The time scale spectrum reveals individual signal components and indicates the statistical properties of each component: deterministic or stochastic.

Next step is to distinguish between different sources of infrasound on-line. This will require signal classification after detection is made. The implementation of wavelet – neural network in hardware may be a first choice. In this work the Independent Component Analysis is presented to improve the quality of the infrasonic signals by removing background noise before the hardware classification. The implementation of the discrete wavelet transform in a Field Programmable Gate Array (FPGA) is also included in this thesis using Xilinx System Generator and Simulink software.

A study of using infrasound recordings together with a miniature 3-axis fluxgate magnetometer to find meteorites as soon as possible after hitting the earth is also presented in this work.

Ort, förlag, år, upplaga, sidor
Stockholm: Fysik , 2006. , s. vi, 48
Serie
Trita-FYS, ISSN 0280-316X ; 2006:32
Nyckelord [en]
infrasound, seismic signals, feature extraction, wavelets, fingerprints, mining, magnetometer
Nationell ämneskategori
Fysik
Identifikatorer
URN: urn:nbn:se:kth:diva-3978OAI: oai:DiVA.org:kth-3978DiVA, id: diva2:10244
Presentation
2006-05-31, Sal FA32, AlbaNova, Roslagstullsbacken 21, Stockholm, 10:00
Opponent
Handledare
Anmärkning
QC 20101110Tillgänglig från: 2006-05-19 Skapad: 2006-05-19 Senast uppdaterad: 2010-11-10Bibliografiskt granskad
Delarbeten
1. Filtering and extracting features from infrasound data
Öppna denna publikation i ny flik eller fönster >>Filtering and extracting features from infrasound data
2005 (Engelska)Ingår i: 2005 14TH IEEE-NPSS Real Time Conference: Stockholm; 4 June 2005 through 10 June 2005, 2005, s. 451-455Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

There are many reasons for using infrasound, i.e. low frequency sound, to monitor various events. Inherent features like its long-distance propagation and the use of simple, ground based equipment in very flexible system are some. The disadvantage is that it is a slow system due to the speed of sound. In this papr we try to show that there are several other advantages if one can extract all the features of the signal. In this way it is hoped that we can get a fingerprint of the event that caused the infrasound. Rayleigh waves and sound from epicentre may be obtained for earthquakes, pressure pulses and electro jets from aurora, core radius and funnel shape from tornados, etc. All these possibilities are suggestive for further R&D of the infrasound detection systems.

Nationell ämneskategori
Teknik och teknologier
Identifikatorer
urn:nbn:se:kth:diva-14106 (URN)10.1109/RTC.2005.1547494 (DOI)2-s2.0-33751438758 (Scopus ID)978-0-7803-9183-3 (ISBN)
Anmärkning
QC 20100713Tillgänglig från: 2010-07-13 Skapad: 2010-07-13 Senast uppdaterad: 2010-11-10Bibliografiskt granskad
2. Infrasonic and Seismic Signals from Earthquake and Explosions in Arequipa, Perú
Öppna denna publikation i ny flik eller fönster >>Infrasonic and Seismic Signals from Earthquake and Explosions in Arequipa, Perú
Visa övriga...
2006 (Engelska)Ingår i: Western Pacific Geophysics Meeting. 24-27 July 2006, Beijing, China, 2006Konferensbidrag, Publicerat paper (Refereegranskat)
Nationell ämneskategori
Fysik
Identifikatorer
urn:nbn:se:kth:diva-26047 (URN)
Anmärkning
QC 20101110Tillgänglig från: 2010-11-10 Skapad: 2010-11-10 Senast uppdaterad: 2010-11-10Bibliografiskt granskad
3. Obtaining "images" from iron objects using a 3-axis fluxgate magnetometer
Öppna denna publikation i ny flik eller fönster >>Obtaining "images" from iron objects using a 3-axis fluxgate magnetometer
Visa övriga...
2007 (Engelska)Ingår i: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 580, nr 2, s. 1105-1109Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Magnetic objects can cause local variations in the Earth's magnetic field that can be measured with a magnetometer. Here we used triaxial magnetometer measurements and an analysis method employing wavelet techniques to determine the "signature" or "fingerprint" of different iron objects. Clear distinctions among the iron samples were observed. The time-dependent changes in the frequency powers were extracted by use of the Morlet wavelet corresponding to frequency bands from 0.1 to 100 Hz. (c) 2007 Elsevier B.V. All rights reserved.

Nyckelord
magnetometer, feature extraction, wavelets, fingerprints
Nationell ämneskategori
Fysik
Identifikatorer
urn:nbn:se:kth:diva-14107 (URN)10.1016/j.nima.2007.06.070 (DOI)000250128000058 ()2-s2.0-34548476793 (Scopus ID)
Anmärkning
QC 20100713Tillgänglig från: 2010-07-13 Skapad: 2010-07-13 Senast uppdaterad: 2017-12-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Sök vidare i DiVA

Av författaren/redaktören
Chilo, José
Av organisationen
Fysik
Fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 2800 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf