Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Polymer-nanofiller prepared by high-energy ball milling and high velocity cold compaction
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Strukturakustik.ORCID-id: 0000-0001-5760-3919
2008 (Engelska)Ingår i: Polymer Composites, ISSN 0272-8397, E-ISSN 1548-0569, Vol. 29, nr 3, s. 252-261Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

High-energy ball milling using comilling in a solid state by low-temperature mechanical alloying to prepare nickel-ferrite (NiFe2O4) nanopowders and ultrafine poly(methyl methacrylate) (PMMA), dispersing nanoparticles in a polymer matrix, and a uniaxial high-velocity cold compaction process using a cylindrical, hardened steel die and a new technique with relaxation assists have been studied. The focus has been on the particle size distributions of the nanocomposite powder during the milling and on the surface morphology of the nanocomposite-compacted materials after compaction with and without relaxation assists. Experimental results for different milling systems are presented showing the effects of milling time and material ratio. It was found that a longer mixing time give a higher degree of dispersion of the nanopowder on the PMMA particle surfaces. Furthermore, with increasing content of NiFe2O4 nanopowder, the reduction of the particle size was more effective. Different postcompacting profiles, i.e. different energy distributions between the upper and lower parts of the compacted powder bed, lead to different movements of the various particles and particle layers. Uniformity, homogeneity, and densification on the surfaces in the compacted powder are influenced by the postcompacting magnitude and direction. It was found that the relaxation assist device leads to an improvement in the polymer powder compaction process by reducing the expansion of the compacted volume and by reducing the different opposite velocities, giving the compacted composite bed a more homogeneous opposite velocity during the decompacting stage and reducing the delay time between the successive pressure waves.

Ort, förlag, år, upplaga, sidor
2008. Vol. 29, nr 3, s. 252-261
Nyckelord [en]
LAYERED SILICATE NANOCOMPOSITES; COMPOSITE; POLYPROPYLENE; CONDUCTIVITY; EXTRUSION; POWDERS
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:kth:diva-6229DOI: 10.1002/pc.20353ISI: 000253401700003Scopus ID: 2-s2.0-41449115349OAI: oai:DiVA.org:kth-6229DiVA, id: diva2:10878
Anmärkning

QC 20100630

Tillgänglig från: 2006-10-06 Skapad: 2006-10-06 Senast uppdaterad: 2017-12-14Bibliografiskt granskad
Ingår i avhandling
1. Novel Technique to Improve High-Velocity Cold Compaction: Processing of Polymer Powders and Polymer-Based Nanocomposite High Performance Components
Öppna denna publikation i ny flik eller fönster >>Novel Technique to Improve High-Velocity Cold Compaction: Processing of Polymer Powders and Polymer-Based Nanocomposite High Performance Components
2006 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Compaction of polymer powders and polymer-based nanocomposites by uniaxial high-velocity cold compaction (HVC), by high-energy ball milling (HEBM) and using a novel technique, relaxation assists, was investigated with a focus on the process parameters, the compactibility characteristics, surface morphology and friction. The basic phenomena associated with HVC are explained and the general energy principle is introduced to explain the pull-out phenomenon, springback gradient, delay time, relative time of the pressure wave, and stick-slip phenomenon during the compaction process. Experimental results for different compaction profiles, different particle size distributions and different milling system for polymer-based nanocomposite are presented, showing the effect of varying the process parameters on the compacted material; the compactibility in the compacted bed, the uniformity of the compacted surface, the pull-out phenomenon, the springback gradient, the stick-slip phenomenon and the homogeneity of the dispersions of nanoparticles in the polymer powders in the solid state. It was found that the high-velocity compaction process is an interruption process and that the opposite velocity and pressure loss during the compaction process have a major influence on the quality of the compacted material. The relaxation assist device is a novel technique that has been successfully developed to improve the compaction process. The relaxation assists are parts of the piston and they are regarded as projectile supports. They are constructed of the same material as the piston, and the diameters are the same but the lengths are different. The relaxation assist device leads to an improvement in the compaction of powders, polymer powders and polymer-based nanocomposites by giving a more homogeneous opposite velocity and a better locking of the powder bed in the compacted form during the compaction process with less change in dimensions in the case of both homogeneous and heterogeneous materials. If the movement of the particles is restricted the powder bed attains a higher density and the total elastic springback is minimized. In addition, there is a more homogeneous dispersion of nanoparticles in the case of a heterogeneous material. A much better transfer of the pressure through the powder bed and a smaller loss of pressure lead to a more homogenous stick-slip of the particles and a higher sliding coefficient due to the overall friction during the compaction process.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH, 2006
Serie
Trita-FPT-Report, ISSN 1652-2443 ; 2006:31
Nyckelord
polymer powders, nanocomposites, high-velocity compaction, high-energy ball milling
Nationell ämneskategori
Produktionsteknik, arbetsvetenskap och ergonomi
Identifikatorer
urn:nbn:se:kth:diva-4133 (URN)91-7178-459-4 (ISBN)
Disputation
2006-11-03, E2, Lindstedsvägen 3, Stockholm, 10:15
Opponent
Handledare
Anmärkning
QC 20100630Tillgänglig från: 2006-10-06 Skapad: 2006-10-06 Senast uppdaterad: 2010-06-30Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopushttp://www3.interscience.wiley.com/cgi-bin/jhome/107639242

Personposter BETA

Kari, Leif

Sök vidare i DiVA

Av författaren/redaktören
Azhdar, BruskaStenberg, BengtKari, Leif
Av organisationen
Fiber- och polymerteknologiMWL Strukturakustik
I samma tidskrift
Polymer Composites
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 427 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf