Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Structural Health Monitoring of Bridges: Model-free damage detection method using Machine Learning
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Bro- och stålbyggnad.
2017 (Engelska)Licentiatavhandling, monografi (Övrigt vetenskapligt)
Abstract [en]

This is probably the most appropriate time for the development of robust and reliable structural damage detection systems as aging civil engineering structures, such as bridges, are being used past their life expectancy and beyond their original design loads. Often, when a significant damage to the structure is discovered, the deterioration has already progressed far and required repair is substantial. This is both expensive and has negative impact on the environment and traffic during replacement. For the exposed reasons the demand for efficient Structural Health Monitoring techniques is currently extremely high. This licentiate thesis presents a two-stage model-free damage detection approach based on Machine Learning. The method is applied to data gathered in a numerical experiment using a three-dimensional finite element model of a railway bridge. The initial step in this study consists in collecting the structural dynamic response that is simulated during the passage of a train, considering the bridge in both healthy and damaged conditions. The first stage of the proposed algorithm consists in the design and unsupervised training of Artificial Neural Networks that, provided with input composed of measured accelerations in previous instants, are capable of predicting future output acceleration. In the second stage the prediction errors are used to fit a Gaussian Process that enables to perform a statistical analysis of the distribution of errors. Subsequently, the concept of Damage Index is introduced and the probabilities associated with false diagnosis are studied. Following the former steps Receiver Operating Characteristic curves are generated and the threshold of the detection system can be adjusted according to the trade-off between errors. Lastly, using the Bayes’ Theorem, a simplified method for the calculation of the expected cost of the strategy is proposed and exemplified.

Ort, förlag, år, upplaga, sidor
KTH Royal Institute of Technology, 2017. , s. 62
Serie
TRITA-BKN. Bulletin, ISSN 1103-4270 ; 149
Nyckelord [en]
Structural Health Monitoring, Machine Learning, Damage detection, Model-free based method, Artificial Neural Networks, Gaussian Process, Cost optimization
Nationell ämneskategori
Annan samhällsbyggnadsteknik Infrastrukturteknik
Forskningsämne
Byggvetenskap
Identifikatorer
URN: urn:nbn:se:kth:diva-205616ISBN: 978-91-7729-345-3 (tryckt)OAI: oai:DiVA.org:kth-205616DiVA, id: diva2:1089610
Presentation
2017-05-30, M108, Brinellvägen 23, KTH, Stockholm, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20170420

Tillgänglig från: 2017-04-20 Skapad: 2017-04-20 Senast uppdaterad: 2017-04-20Bibliografiskt granskad

Open Access i DiVA

fulltext(2718 kB)656 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2718 kBChecksumma SHA-512
c86704f2b6dfb5d12ae5d6bfe15e016966c0562ea2cee8bf9e71916160a8a95fd58cfff4287046b2bb87e5a5caae346ef24408482e01f7ae8869300fae15a03e
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Neves, Cláudia
Av organisationen
Bro- och stålbyggnad
Annan samhällsbyggnadsteknikInfrastrukturteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 656 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 1446 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf