Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Big Data in Maintenance Decision Support Systems: Aggregation of Disparate Data Types
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion.
2016 (Engelska)Ingår i: Euromaintenance 2016 Conference Proceedings, 2016, s. 503-512Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

There is need to obtain reliable information on current and future asset health status to support maintenance decision making process. Within maintenance two main sources of data can be distinguished: Computerized Maintenance Management System (CMMS) for asset registry and maintenance work records; and Condition Monitoring Systems (CM) for direct asset components health state monitoring. There are also other sources of information like SCADA (Supervisory Control and Data Acquisition) for process and control monitoring that can provide additional contextual information leading to better decision making. However data produced acquired and processed and in those system are of disparate types, nature and granularity. This variety includes: event data about failures or performed maintenance work mostly descriptions in unstructured natural language; process variables obtained from different types of sensors and different physical variables from transducers, acquired with different sampling frequencies. Indeed, condition monitoring data are so disparate in nature that maintainers deal with scalars (temperature) through waveforms (vibration) to 2D thermography images and 3D data from machine geometry measuring. Integration and aggregation of those data is not a trivial task and requires modelling of knowledge about those data types, their mutual dependencies and dependencies with monitored processes. There are some attempts of standardisation that try to enable integration of CBM data from different sources. The conversion of those amount of data in meaningful data sets is required for better machine health assessment and tracking within the specific operational context for the asset. This will also enhance the maintenance decision support system with information on how different operational condition can affect the reliability of the asset for concrete contextual circumstances.

Ort, förlag, år, upplaga, sidor
2016. s. 503-512
Nationell ämneskategori
Maskinteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-205918OAI: oai:DiVA.org:kth-205918DiVA, id: diva2:1090722
Konferens
Euromaintenance 30 May-1 June 2016, Athens, Greece
Forskningsfinansiär
XPRES - Initiative for excellence in production research
Anmärkning

QC 20170519

Tillgänglig från: 2017-04-25 Skapad: 2017-04-25 Senast uppdaterad: 2017-05-19Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Website

Sök vidare i DiVA

Av författaren/redaktören
Wang, Lihui
Av organisationen
Industriell produktion
Maskinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 248 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf