Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Uncertainty estimation of predictions of peptides' chromatographic retention times in shotgun proteomics
KTH, Skolan för datavetenskap och kommunikation (CSC).
KTH, Skolan för datavetenskap och kommunikation (CSC).
KTH, Skolan för bioteknologi (BIO), Genteknologi. KTH, Centra, Science for Life Laboratory, SciLifeLab.ORCID-id: 0000-0002-5401-5553
KTH, Centra, Science for Life Laboratory, SciLifeLab.ORCID-id: 0000-0001-5689-9797
2017 (Engelska)Ingår i: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 33, nr 4, s. 508-513Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Motivation: Liquid chromatography is frequently used as a means to reduce the complexity of peptide-mixtures in shotgun proteomics. For such systems, the time when a peptide is released from a chromatography column and registered in the mass spectrometer is referred to as the peptide's retention time. Using heuristics or machine learning techniques, previous studies have demonstrated that it is possible to predict the retention time of a peptide from its amino acid sequence. In this paper, we are applying Gaussian Process Regression to the feature representation of a previously described predictor ELUDE. Using this framework, we demonstrate that it is possible to estimate the uncertainty of the prediction made by the model. Here we show how this uncertainty relates to the actual error of the prediction. Results: In our experiments, we observe a strong correlation between the estimated uncertainty provided by Gaussian Process Regression and the actual prediction error. This relation provides us with new means for assessment of the predictions. We demonstrate how a subset of the peptides can be selected with lower prediction error compared to the whole set. We also demonstrate how such predicted standard deviations can be used for designing adaptive windowing strategies.

Ort, förlag, år, upplaga, sidor
OXFORD UNIV PRESS , 2017. Vol. 33, nr 4, s. 508-513
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:kth:diva-205074DOI: 10.1093/bioinformatics/btw619ISI: 000397264100006Scopus ID: 2-s2.0-85028336596OAI: oai:DiVA.org:kth-205074DiVA, id: diva2:1115202
Anmärkning

QC 20170626

Tillgänglig från: 2017-06-26 Skapad: 2017-06-26 Senast uppdaterad: 2018-09-19Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

The, MatthewKäll, Lukas

Sök vidare i DiVA

Av författaren/redaktören
Afkham, Heydar MaboudiQiu, XuanbinThe, MatthewKäll, Lukas
Av organisationen
Skolan för datavetenskap och kommunikation (CSC)GenteknologiScience for Life Laboratory, SciLifeLab
I samma tidskrift
Bioinformatics
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 878 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf