Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
First-principles prediction of the stacking fault energy of gold at finite temperature
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad materialfysik. Uppsala University, Sweden. (Enheten egenskaper)
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad materialfysik. (Enheten egenskaper)ORCID-id: 0000-0001-9317-6205
2017 (Engelska)Ingår i: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 135, s. 88-95Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The intrinsic stacking fault energy (ISFE) γ is a material parameter fundamental to the discussion of plastic deformation mechanisms in metals. Here, we scrutinize the temperature dependence of the ISFE of Au through accurate first-principles derived Helmholtz free energies employing both the super cell approach and the axial Ising model (AIM). A significant decrease of the ISFE with temperature, −(36–39) % from 0 to 890 K depending on the treatment of thermal expansion, is revealed, which matches the estimate based on the experimental temperature coefficient dγ/dT closely. We make evident that this decrease predominantly originates from the excess vibrational entropy at the stacking fault layer, although the contribution arising from the static lattice expansion compensates it by approximately 60%. Electronic excitations are found to be of minor importance for the ISFE change with temperature. We show that the Debye model in combination with the AIM captures the correct sign but significantly underestimates the magnitude of the vibrational contribution to γ(T). The hexagonal close-packed (hcp) and double hcp structures are established as metastable phases of Au. Our results demonstrate that quantitative agreement with experiments can be obtained if all relevant temperature-induced excitations are considered in first-principles modeling and that the temperature dependence of the ISFE is substantial enough to be taken into account in crystal plasticity modeling.

Ort, förlag, år, upplaga, sidor
Acta Materialia Inc , 2017. Vol. 135, s. 88-95
Nationell ämneskategori
Annan materialteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-210271DOI: 10.1016/j.actamat.2017.06.009ISI: 000407536800010Scopus ID: 2-s2.0-85020823529OAI: oai:DiVA.org:kth-210271DiVA, id: diva2:1118257
Forskningsfinansiär
Carl Tryggers stiftelse för vetenskaplig forskning Vetenskapsrådet
Anmärkning

QC 20170630

Tillgänglig från: 2017-06-30 Skapad: 2017-06-30 Senast uppdaterad: 2017-09-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Li, XiaoqingSchönecker, Stephan
Av organisationen
Tillämpad materialfysik
I samma tidskrift
Acta Materialia
Annan materialteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 25 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf