Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Eulerian and Lagrangian approaches to multidimensional condensation and collection
KTH, Centra, Nordic Institute for Theoretical Physics NORDITA. Stockholm Univ, Sweden.
KTH, Centra, Nordic Institute for Theoretical Physics NORDITA. Stockholm Univ, Sweden.ORCID-id: 0000-0002-7304-021X
2017 (Engelska)Ingår i: Journal of Advances in Modeling Earth Systems, ISSN 1942-2466, Vol. 9, nr 2, s. 1116-1137Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Turbulence is argued to play a crucial role in cloud droplet growth. The combined problem of turbulence and cloud droplet growth is numerically challenging. Here an Eulerian scheme based on the Smoluchowski equation is compared with two Lagrangian superparticle (or superdroplet) schemes in the presence of condensation and collection. The growth processes are studied either separately or in combination using either two-dimensional turbulence, a steady flow or just gravitational acceleration without gas flow. Good agreement between the different schemes for the time evolution of the size spectra is observed in the presence of gravity or turbulence. The Lagrangian superparticle schemes are found to be superior over the Eulerian one in terms of computational performance. However, it is shown that the use of interpolation schemes such as the cloud-in-cell algorithm is detrimental in connection with superparticle or superdroplet approaches. Furthermore, the use of symmetric over asymmetric collection schemes is shown to reduce the amount of scatter in the results. For the Eulerian scheme, gravitational collection is rather sensitive to the mass bin resolution, but not so in the case with turbulence. Plain Language Summary The bottleneck problem of cloud droplet growth is one of the most challenging problems in cloud physics. Cloud droplet growth is neither dominated by condensation nor gravitational collision in the size range of 15 mu m similar to 40 mu m [1]. Turbulence-generated collection has been thought to be the mechanism to bridge the size gap, i.e., the bottleneck problem. This study compares the Lagrangian and Eulerian schemes in detail to tackle with the turbulence-generated collection.

Ort, förlag, år, upplaga, sidor
American Geophysical Union (AGU), 2017. Vol. 9, nr 2, s. 1116-1137
Nationell ämneskategori
Geovetenskap och miljövetenskap
Identifikatorer
URN: urn:nbn:se:kth:diva-211615DOI: 10.1002/2017MS000930ISI: 000406239300020Scopus ID: 2-s2.0-85018911257OAI: oai:DiVA.org:kth-211615DiVA, id: diva2:1130802
Forskningsfinansiär
Vetenskapsrådet, 20125797Knut och Alice Wallenbergs Stiftelse, KAW 2014.0048Wenner-Gren Stiftelserna
Anmärkning

QC 20170811

Tillgänglig från: 2017-08-11 Skapad: 2017-08-11 Senast uppdaterad: 2017-08-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Brandenburg, Axel

Sök vidare i DiVA

Av författaren/redaktören
Li, Xiang-YuBrandenburg, Axel
Av organisationen
Nordic Institute for Theoretical Physics NORDITA
I samma tidskrift
Journal of Advances in Modeling Earth Systems
Geovetenskap och miljövetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 9 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf