Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints
KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.ORCID-id: 0000-0002-8640-9370
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Molecular Systems Biology, ISSN 1744-4292, E-ISSN 1744-4292, Vol. 13, nr 8, artikel-id 935Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Genome-scale metabolic models (GEMs) are widely used to calculate metabolic phenotypes. They rely on defining a set of constraints, the most common of which is that the production of metabolites and/or growth are limited by the carbon source uptake rate. However, enzyme abundances and kinetics, which act as limitations on metabolic fluxes, are not taken into account. Here, we present GECKO, a method that enhances a GEM to account for enzymes as part of reactions, thereby ensuring that each metabolic flux does not exceed its maximum capacity, equal to the product of the enzyme's abundance and turnover number. We applied GECKO to a Saccharomyces cerevisiae GEM and demonstrated that the new model could correctly describe phenotypes that the previous model could not, particularly under high enzymatic pressure conditions, such as yeast growing on different carbon sources in excess, coping with stress, or overexpressing a specific pathway. GECKO also allows to directly integrate quantitative proteomics data; by doing so, we significantly reduced flux variability of the model, in over 60% of metabolic reactions. Additionally, the model gives insight into the distribution of enzyme usage between and within metabolic pathways. The developed method and model are expected to increase the use of model-based design in metabolic engineering.

Ort, förlag, år, upplaga, sidor
WILEY , 2017. Vol. 13, nr 8, artikel-id 935
Nyckelord [en]
enzyme kinetics, flux balance analysis, molecular crowding, proteomics, Saccharomyces cerevisiae
Nationell ämneskategori
Oceanografi, hydrologi och vattenresurser
Identifikatorer
URN: urn:nbn:se:kth:diva-212333DOI: 10.15252/msb.20167411ISI: 000406943100001OAI: oai:DiVA.org:kth-212333DiVA, id: diva2:1134586
Anmärkning

QC 20170821

Tillgänglig från: 2017-08-21 Skapad: 2017-08-21 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Zhang, Cheng

Sök vidare i DiVA

Av författaren/redaktören
Zhang, Cheng
Av organisationen
Centrum för Autonoma System, CAS
I samma tidskrift
Molecular Systems Biology
Oceanografi, hydrologi och vattenresurser

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 20 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf