Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Bayesian Additive Model for Understanding Public Transport Usage in Special Events
KTH, Centra, Nordic Institute for Theoretical Physics NORDITA. Singapore-MIT Alliance for Research and Technology, Singapore; Stockholm Univ, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden.
2017 (Engelska)Ingår i: IEEE Transaction on Pattern Analysis and Machine Intelligence, ISSN 0162-8828, E-ISSN 1939-3539, Vol. 39, nr 11, s. 2113-2126Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Public special events, like sports games, concerts and festivals are well known to create disruptions in transportation systems, often catching the operators by surprise. Although these are usually planned well in advance, their impact is difficult to predict, even when organisers and transportation operators coordinate. The problem highly increases when several events happen concurrently. To solve these problems, costly processes, heavily reliant on manual search and personal experience, are usual practice in large cities like Singapore, London or Tokyo. This paper presents a Bayesian additive model with Gaussian process components that combines smart card records from public transport with context information about events that is continuously mined from the Web. We develop an efficient approximate inference algorithm using expectation propagation, which allows us to predict the total number of public transportation trips to the special event areas, thereby contributing to a more adaptive transportation system. Furthermore, for multiple concurrent event scenarios, the proposed algorithm is able to disaggregate gross trip counts into their most likely components related to specific events and routine behavior. Using real data from Singapore, we show that the presented model outperforms the best baseline model by up to 26 percent in R-2 and also has explanatory power for its individual components.

Ort, förlag, år, upplaga, sidor
IEEE COMPUTER SOC , 2017. Vol. 39, nr 11, s. 2113-2126
Nyckelord [en]
Additive models, transportation demand, Gaussian processes, expectation propagation
Nationell ämneskategori
Samhällsbyggnadsteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-215777DOI: 10.1109/TPAMI.2016.2635136ISI: 000412028600001Scopus ID: 2-s2.0-85032272313OAI: oai:DiVA.org:kth-215777DiVA, id: diva2:1151176
Anmärkning

QC 20171023

Tillgänglig från: 2017-10-23 Skapad: 2017-10-23 Senast uppdaterad: 2017-10-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Borysov, Stanislav S.
Av organisationen
Nordic Institute for Theoretical Physics NORDITA
I samma tidskrift
IEEE Transaction on Pattern Analysis and Machine Intelligence
Samhällsbyggnadsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 11 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf