kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Simulations with current constraints of ELM-induced tungsten melt motion in ASDEX Upgrade
KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.ORCID-id: 0000-0002-0022-2944
KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.ORCID-id: 0000-0002-6712-3625
KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik. KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.ORCID-id: 0000-0001-9632-8104
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T170, artikel-id 014006Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Melt motion simulations of recent ASDEX Upgrade experiments on transient-induced melting of a tungsten leading edge during ELMing H-mode are performed with the incompressible fluid dynamics code MEMOS 3D. The total current flowing through the sample was measured in these experiments providing an important constraint for the simulations since thermionic emission is considered to be responsible for the replacement current driving melt motion. To allow for a reliable comparison, the description of the space-charge limited regime of thermionic emission has been updated in the code. The effect of non-periodic aspects of the spatio-temporal heat flux in the temperature distribution and melt characteristics as well as the importance of current limitation are investigated. The results are compared with measurements of the total current and melt profile.

Ort, förlag, år, upplaga, sidor
Institute of Physics Publishing (IOPP), 2017. Vol. T170, artikel-id 014006
Nyckelord [en]
transient melting, melt layer motion, thermionic emission, space-charge limitation
Nationell ämneskategori
Fysik
Identifikatorer
URN: urn:nbn:se:kth:diva-217724DOI: 10.1088/1402-4896/aa8855ISI: 000414120500006Scopus ID: 2-s2.0-85030833199OAI: oai:DiVA.org:kth-217724DiVA, id: diva2:1160370
Konferens
16th International Conference on Plasma-Facing Materials and Components for Fusion Applications, MAY 16-19, 2017, GERMANY
Anmärkning

QC 20171127

Tillgänglig från: 2017-11-27 Skapad: 2017-11-27 Senast uppdaterad: 2024-03-15Bibliografiskt granskad
Ingår i avhandling
1. Modelling of macroscopic melt motion in fusion devices
Öppna denna publikation i ny flik eller fönster >>Modelling of macroscopic melt motion in fusion devices
2020 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Magnetic confinement fusion is one of the most well developed methods envisioned to achieve thermonuclear fusion energy in the future. A central obstacle that remains in the way of safe and sustainable reactor operation is the interaction that occurs between the plasma and vessel wall components. Lengthy or intense plasma exposures will lead to surface erosion or plasma pollution. Metal plasma-facing components can melt, in which case the liquid is subsequently displaced by various accelerating forces resulting to macroscopic surface deformation, which will ultimately decrease the functionality and lifetime of the armour. Experiments have been performed in numerous contemporary tokamaks in order to elucidate the various processes behind wall heating, metal melting, and surface deformation. Combined with numerical tools, these provide the framework for predictive studies and conclusions for the armour effectiveness in future tokamaks ITER and DEMO.

This thesis is focused on one such numerical tool: MEMOS-U, a heat transfer and fluid motion code that was developed specifically to model macroscopic surface deformation in magnetic confinement devices. The code employs the shallow water approximation of the Navier-Stokes equations, which drastically reduces the computational cost and enables multi-timescale simulations over large exposed areas. A detailed overview of the theoretical framework and numerical implementation of the code is provided, followed by results from benchmarking activities with various melt experiments as well as predictive studies for ITER. Model limitations are also discussed.

Ort, förlag, år, upplaga, sidor
Stockholm, Sweden: KTH Royal Institute of Technology, 2020. s. 83
Serie
TRITA-EECS-AVL ; 2020:44
Nationell ämneskategori
Fusion, plasma och rymdfysik
Forskningsämne
Elektro- och systemteknik
Identifikatorer
urn:nbn:se:kth:diva-281412 (URN)978-91-7873-639-3 (ISBN)
Disputation
2020-10-09, F3 Lindstedtsvägen 26, https://kth-se.zoom.us/j/69058693847, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20200921

Tillgänglig från: 2020-09-21 Skapad: 2020-09-18 Senast uppdaterad: 2022-06-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Thorén, EmilRatynskaia, Svetlana V.Tolias, Panagiotis

Sök vidare i DiVA

Av författaren/redaktören
Thorén, EmilRatynskaia, Svetlana V.Tolias, Panagiotis
Av organisationen
Rymd- och plasmafysikFusionsplasmafysik
I samma tidskrift
Physica Scripta
Fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 49 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf