Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Urban network travel time prediction based on a probabilistic principal component analysis model of probe data
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Transportvetenskap.
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Transportvetenskap. Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115 USA.
2018 (Engelska)Ingår i: IEEE transactions on intelligent transportation systems (Print), ISSN 1524-9050, E-ISSN 1558-0016, Vol. 19, nr 2, s. 436-445Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper proposes a network travel time prediction methodology based on probe data. The model is intended as a tool for traffic management, trip planning, and online vehicle routing, and is designed to be efficient and scalable in calibration and real-time prediction; flexible to changes in network, data, and model extensions; and robust against noisy and missing data. A multivariate probabilistic principal component analysis (PPCA) model is proposed. Spatio-temporal correlations are inferred from historical data based on MLE and an efficient EM algorithm for handling missing data. Prediction is performed in real time by computing the expected distribution of link travel times in future time intervals, conditional on recent current-day observations. A generalization of the methodology partitions the network and applies a distinct PPCA model to each subnetwork. The methodology is applied to the network of downtown Shenzhen, China, using taxi probe data. The model captures variability over months and weekdays as well as other factors. Prediction with PPCA outperforms k-nearest neighbors prediction for horizons from 15 to 45 min, and a hybrid method of PPCA and local smoothing provides the highest accuracy.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2018. Vol. 19, nr 2, s. 436-445
Nyckelord [en]
Travel time prediction, PPCA, probe data
Nationell ämneskategori
Transportteknik och logistik
Identifikatorer
URN: urn:nbn:se:kth:diva-219362DOI: 10.1109/TITS.2017.2703652ISI: 000424060200011Scopus ID: 2-s2.0-85020405032OAI: oai:DiVA.org:kth-219362DiVA, id: diva2:1162467
Forskningsfinansiär
TrafikverketTrenOp, Transport Research Environment with Novel Perspectives
Anmärkning

QC 20171212

Tillgänglig från: 2017-12-04 Skapad: 2017-12-04 Senast uppdaterad: 2018-02-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Jenelius, ErikKoutsopoulos, Haris
Av organisationen
Transportvetenskap
I samma tidskrift
IEEE transactions on intelligent transportation systems (Print)
Transportteknik och logistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 34 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf