Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Utvärdering av nyckelordsbaserad textkategoriseringsalgoritmer
KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.
2016 (Svenska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Supervised learning algorithms have been used for automatic text categoriza- tion with very good results. But supervised learning requires a large amount of manually labeled training data and this is a serious limitation for many practical applications. Keyword-based text categorization does not require manually la- beled training data and has therefore been presented as an attractive alternative to supervised learning. The aim of this study is to explore if there are other li- mitations for using keyword-based text categorization in industrial applications. This study also tests if a new lexical resource, based on the paradigmatic rela- tions between words, could be used to improve existing keyword-based text ca- tegorization algorithms. An industry motivated use case was created to measure practical applicability. The results showed that none of five examined algorithms was able to meet the requirements in the industrial motivated use case. But it was possible to modify one algorithm proposed by Liebeskind et.al. (2015) to meet the requirements. The new lexical resource produced relevant keywords for text categorization but there was still a large variance in the algorithm’s capaci- ty to correctly categorize different text categories. The categorization capacity was also generally too low to meet the requirements in many practical applica- tions. Further studies are needed to explore how the algorithm’s categorization capacity could be improved. 

Ort, förlag, år, upplaga, sidor
2016.
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:kth:diva-222164OAI: oai:DiVA.org:kth-222164DiVA, id: diva2:1179709
Externt samarbete
Gavagai
Ämne / kurs
Datalogi
Utbildningsprogram
Civilingenjörsexamen - Datateknik
Handledare
Examinatorer
Tillgänglig från: 2018-02-06 Skapad: 2018-02-02 Senast uppdaterad: 2018-02-06Bibliografiskt granskad

Open Access i DiVA

fulltext(420 kB)39 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 420 kBChecksumma SHA-512
a73c06a131cb123142465b6463fdbbb9428707d369ac0b21afdc535bd789c06dbf1b0ca6e05d26e42e4acba93a4271a3413cad5fb028fb2017759f7e84349d59
Typ fulltextMimetyp application/pdf

Av organisationen
Programvaruteknik och datorsystem, SCS
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 39 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 150 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf