Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics
KTH, Skolan för teknikvetenskaplig kommunikation och lärande (ECE), Avdelningen för bibliotek, språk och ARC, Bibliotek, Publiceringens infrastruktur.ORCID-id: 0000-0003-0229-3073
2018 (Engelska)Ingår i: Journal of Informetrics, ISSN 1751-1577, E-ISSN 1875-5879, Vol. 12, nr 1, s. 133-152Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The purpose of this study is to find a theoretically grounded, practically applicable and useful granularity level of an algorithmically constructed publication-level classification of research publications (ACPLC). The level addressed is the level of research topics. The methodology we propose uses synthesis papers and their reference articles to construct a baseline classification. A dataset of about 31 million publications, and their mutual citations relations, is used to obtain several ACPLCs of different granularity. Each ACPLC is compared to the baseline classification and the best performing ACPLC is identified. The results of two case studies show that the topics of the cases are closely associated with different classes of the identified ACPLC, and that these classes tend to treat only one topic. Further, the class size variation is moderate, and only a small proportion of the publications belong to very small classes. For these reasons, we conclude that the proposed methodology is suitable to determine the topic granularity level of an ACPLC and that the ACPLC identified by this methodology is useful for bibliometric analyses. 

Ort, förlag, år, upplaga, sidor
Elsevier Ltd , 2018. Vol. 12, nr 1, s. 133-152
Nyckelord [en]
Algorithmic classification, Article-level classification, Classification systems, Granularity level, Topic, Computer applications, Bibliometric analysis, Case-studies, Classification system, Different class, Different granularities, Granularity levels, Research topics, Publishing
Nationell ämneskategori
Medie- och kommunikationsvetenskap
Identifikatorer
URN: urn:nbn:se:kth:diva-223152DOI: 10.1016/j.joi.2017.12.006ISI: 000427479800010Scopus ID: 2-s2.0-85039443998OAI: oai:DiVA.org:kth-223152DiVA, id: diva2:1190422
Anmärkning

Export Date: 13 February 2018; Article; Correspondence Address: Sjögårde, P.; University Library, Karolinska InstitutetSweden; email: peter.sjogarde@ki.se. QC QC 20180314

Tillgänglig från: 2018-03-14 Skapad: 2018-03-14 Senast uppdaterad: 2018-05-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Ahlgren, Per

Sök vidare i DiVA

Av författaren/redaktören
Ahlgren, Per
Av organisationen
Publiceringens infrastruktur
I samma tidskrift
Journal of Informetrics
Medie- och kommunikationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 318 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf