Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic whole heart segmentation using deep learning and shape context
KTH, Skolan för teknik och hälsa (STH).ORCID-id: 0000-0002-0442-3524
KTH, Skolan för teknik och hälsa (STH).ORCID-id: 0000-0002-7750-1917
2018 (Engelska)Ingår i: 8th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2017, Held in Conjunction with MICCAI 2017, Springer, 2018, Vol. 10663, s. 242-249Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

To assist 3D cardiac image analysis, we propose an automatic whole heart segmentation using a deep learning framework combined with shape context information that is encoded in volumetric shape models. The proposed processing pipeline consists of three major steps: scout segmentation with orthogonal 2D U-nets, shape context estimation and refining segmentation with U-net and shape context. The proposed method was evaluated using the MMWHS challenge data. Two sets of networks were trained separately for contrast-enhanced CT and MRI. On the 20 training datasets, using 5-fold cross-validation, the average Dice coefficients for the left ventricle, the right ventricle, the left atrium, the right atrium and the myocardium of the left ventricle were 0.895, 0.795, 0.847, 0.821, 0.807 for MRI and 0.935, 0.825, 0.908, 0.881, 0.879 for CT, respectively. Further improvement may be possible given more training data or advanced data augmentation strategy.

Ort, förlag, år, upplaga, sidor
Springer, 2018. Vol. 10663, s. 242-249
Serie
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN 0302-9743 ; 10663
Nyckelord [en]
Deep learning, Fully convolutional network, Heart segmentation, Shape context, Statistic shape model
Nationell ämneskategori
Medicin och hälsovetenskap
Identifikatorer
URN: urn:nbn:se:kth:diva-225494DOI: 10.1007/978-3-319-75541-0_26Scopus ID: 2-s2.0-85044467877ISBN: 9783319755403 (tryckt)OAI: oai:DiVA.org:kth-225494DiVA, id: diva2:1195738
Konferens
8th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, 10 September 2017 through 14 September 2017
Forskningsfinansiär
Hjärt-Lungfonden, 2016-0609Vetenskapsrådet, 2014-6153
Anmärkning

QC 20180406

Tillgänglig från: 2018-04-06 Skapad: 2018-04-06 Senast uppdaterad: 2018-04-06Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Wang, ChunliangSmedby, Örjan

Sök vidare i DiVA

Av författaren/redaktören
Wang, ChunliangSmedby, Örjan
Av organisationen
Skolan för teknik och hälsa (STH)
Medicin och hälsovetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 838 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf