Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A unified variational framework for the space discontinuous Galerkin method for elastic wave propagation in anisotropic and piecewise homogeneous media
CentraleSupélec, Université Paris-Saclay, France.
CentraleSupélec, Université Paris-Saclay, France.
CentraleSupélec, Université Paris-Saclay, France.ORCID-id: 0000-0002-3213-0040
CentraleSupélec, Université Paris-Saclay, France.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 338, s. 299-332Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

We present a unified multidimensional variational framework for the space discontinuous Galerkin method for elastic wave propagation in anisotropic and piecewise homogeneous media. Based on an elastic wave oriented formulation and using a tensorial formalism, the proposed framework allows a better understanding of the physical meaning of the terms involved in the discontinuous Galerkin method. The unified variational framework is written for first-order velocity-stress wave equations. An uncoupled upwind numerical flux and two coupled upwind numerical fluxes using respectively the Voigt and the Reuss averages of elastic moduli are defined. Two numerical fluxes that are exact solutions of the Riemann problem on physical interfaces are also developed and analyzed in the 1D case. The implemented solvers are then applied to different elastic media, especially to polycrystalline materials that present a particular case of piecewise homogeneous media. The use of the three upwind numerical fluxes, which only solve approximately the Riemann problem at element interfaces, is investigated.

Ort, förlag, år, upplaga, sidor
Elsevier, 2018. Vol. 338, s. 299-332
Nyckelord [en]
Space discontinuous Galerkin method; Elastic wave propagation; Anisotropy; Piecewise homogeneous medium; Polycrystalline materials
Nationell ämneskategori
Annan teknik
Forskningsämne
Tillämpad matematik och beräkningsmatematik
Identifikatorer
URN: urn:nbn:se:kth:diva-227028DOI: 10.1016/j.cma.2018.04.018ISI: 000436490700013Scopus ID: 2-s2.0-85047003427OAI: oai:DiVA.org:kth-227028DiVA, id: diva2:1202811
Projekt
MAPIE
Anmärkning

QC 20180523

Tillgänglig från: 2018-05-01 Skapad: 2018-05-01 Senast uppdaterad: 2019-02-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Nguyen, Van Dang

Sök vidare i DiVA

Av författaren/redaktören
Nguyen, Van Dang
I samma tidskrift
Computer Methods in Applied Mechanics and Engineering
Annan teknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 54 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf